

HORN’S CURVE ESTIMATION THROUGH MULTI-DIMENSIONAL

INTERPOLATION

THESIS

Andrew L. Bigley, Captain, USAF

AFIT-ENS-13-M-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

This material is declared a work of the U.S. Government and is not subject to copyright

protection in the United States.

AFIT-ENS-13-M-01

HORN’S CURVE ESTIMATION THROUGH MULTI-DIMENSIONAL

INTERPOLATION

THESIS

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operational Research

Andrew L. Bigley, BS

Captain, USAF

March 2013

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENS-13-M-01

HORN’S CURVE ESTIMATION THROUGH MULTI-DIMENSIONAL

INTERPOLATION

Andrew L. Bigley, BS

Captain, USAF

 Approved:

 ____________________________________ ___

 Dr. Kenneth W. Bauer (Member) date

 ____________________________________ ___

 Dr. Mark A. Friend, Lt Col, USAF (Member) date

iv

AFIT-ENS-13-M-01

Abstract

A well-known multivariate data reduction method is principal components

analysis (PCA). PCA transforms the variables under study into a set of components that

are used to summarize the variation among the variables. The benefit is the dimension of

the data may be reduced by the descriptive power of the components, permitting tractable

analysis on large and messy datasets. Integral to successful PCA is determining when to

stop extracting components – the matter is not a trivial one.

A method that consistently produces reliable component extraction estimates is

Horn’s test, named after researcher John L. Horn who introduced the technique in 1965.

The result is Horn’s curve, a graphical indicator used to make a dimensionality

assessment for any n x p matrix. The drawback of Horn’s test is it requires – for each

size n x p study – a large amount of random data to evaluate the hidden component

structure.

Leveraging the flexibility and power of the MATLAB software package, a lookup

table interpolates nearest neighbor searches of pre-processed mean eigenvalue data to

provide real-time results for datasets up to 1,000 variables on 7,000 samples. The

methodology is extended to a linear regression second-order model producing Horn’s

curve, significantly reducing the required size of the lookup table with no loss of

resolution into the dimensionality estimate.

v

Dedication

To my mother, who taught me to be responsible member of society and was constantly

putting the best-interests of her children in front of everything else, even if it was

uncomfortable in one way or another;

To my father, who showed me how to be a good dad long before I became one and is

always willing to listen, without judging or giving advice;

To my daughter, who reminds me that every hour of a day is not all about work and to

stop and have fun now and then, and is growing up way too fast;

To my significant other for her patience and care in letting me do what I needed to do to

be successful at AFIT;

and to all the family and friends that I had to miss seeing as often as we would have liked

over the last eighteen months–thank you for the encouragement that we will visit together

soon.

vi

Acknowledgments

 I would like to express my sincere thanks to my research advisor, Dr. Kenneth

Bauer, for his wisdom and guidance throughout the course of this thesis effort. It was his

spark and motivation that led me this direction. His talent as an academician extends

well beyond the storehouse of knowledge he possesses.

 I am also grateful to my reader and student advisor, Lt Col (Dr) Mark Friend, who

helped me uncover the roadmap to being a successful student at AFIT; the mentoring

sessions were invaluable! His passion for teaching and instilling learning in others

cannot be overstated.

 Finally, a big thank you goes to Trevor Bihl at the Sensor Fusion Lab. His grasp

of the inner workings of MATLAB and the ability to suggest new coding avenues when

things bogged down were pivotal to achieving success with the algorithms.

 The comments and questions they asked of me provided insight into dark corners

of the problem statement and research objective I had not considered, and for them, this

work has certainly been made stronger. Any shortcomings, omissions, or errors are

solely my responsibility.

 Andrew L. Bigley

vii

Table of Contents

Page

Abstract .. iv

Dedication ..v

Acknowledgments.. vi

List of Figures ..x

List of Tables ... xiii

I. Introduction ...1

1.1. Background ..1

1.2. Principal Components Analysis ...1
1.3. An Example--Determining Which Component Loadings Are Relevant2

1.4. Impact of Keeping The Wrong Number of Components: Part I5
1.4.1. Factor Fission ... 6

1.5. Component Extraction Stopping Rules ..7

1.6. Analyst Subjectivity ...7
1.7. Problem Statement ...7

1.8. Research Objectives ...8

1.9. Key Concepts ...9

1.9.1. Sampled vs. Random Data .. 9
1.9.2. Use of Ambiguous Terms ... 9

1.10. Assumptions/Limitations ...9
1.11. Implications ..10
1.12. Notation ..10

1.13. Chapter Summary...13

II. Literature Review ..15

2.1. Historical Perspectives ...15
2.1.1. A Note About Verbiage .. 15

2.2. Graphical PCA Techniques ..16

2.2.1. Scree Line Definition .. 16
2.2.2. Latent Roots .. 17

2.2.3. Kaiser’s Criterion .. 17
2.2.3.1. Considerations Regarding Kaiser’s Criterion 18

2.2.4. Horn’s Test.. 18
2.2.4.1. Considerations Regarding Horn’s Test ... 20

2.2.5. Cattell’s Scree Plot .. 20

viii

2.2.5.1. Considerations Regarding Cattell’s Scree Plot 22
2.3. Objective Evaluations of Stopping Rules Accuracies ..23

2.3.1. Summary of Test Findings--Zwick and Velicer ... 23
2.3.2. Summary of Test Findings--Jackson .. 24

2.3.3. Summary of Test Findings--Peres-Neto et al. ... 24
2.4. Impact of Keeping The Wrong Number of Components: Part II...........................25
2.5. Summary of Component Extraction Stopping Rules ...26
2.6. Expected n x p of Research ..28
2.7. Chapter Summary...32

III. Methodology ..34

3.1. Chapter Overview ..34
3.1.1. Mean Eigenvalue (MEV) Solution ... 35

3.1.2. Linear Regression Second-Order Model (2OM) Solution 35

3.2. Motivation ..35
3.3. Theory of Horn’s Test ..36

3.3.1. Correlation of The Random Data .. 36

3.3.2. Covariance Instead of Correlation .. 38
3.4. Monte Carlo Simulation ...39

3.4.1. Random Number Generator .. 40
3.4.2. The Importance of Selecting Sufficient Monte Carlo Iterations 41

3.5. Flowchart of Horn’s Algorithm for Random Data ...42

3.6. Characteristics of Scree Lines ..44
3.7. Rationale for Excluding Underdetermined Data ..48

3.8. Flowchart of Horn’s Test for Sampled Data ..49
3.9. Interpolation Lookup Table ...51

3.9.1. Dimensions of Data Matching and Search Configurations......................... 52
3.9.2. Lookup Table Granularity... 53

3.9.3. Lookup Table Format ... 58
3.9.4. Datasets Having Small Number of Variables (2 ≤ p ≤ 4) 59

3.10. Nearest Neighbors Search Algorithm ..60
3.10.1. Boundary Conditions Not Along The Diagonal 61
3.10.2. Boundary Conditions Along The Diagonal .. 61
3.10.3. Nearest Neighbors Not At The Boundaries .. 63

3.11. Interpolation–Looking Between the Points ..65

3.11.1. Surrogate Curves ... 67

3.11.2. Interpolation of Horn's Curve ... 68

3.12. Linear Regression Second-Order Model ..73
3.12.1. Suitability of A Second-Order Model ... 73
3.12.2. Least-Squares Estimation of Regression Coefficients 74
3.12.3. Sufficient k for Linear Regression .. 75
3.12.4. Model Adequacy ... 77

3.12.5. Nearest Neighbor Interpolation for the 2OM.. 78

ix

3.12.6. Random Data Graphs Comparisons .. 78
3.13. Methodology Summary ..80

IV. Results and Analysis ..82

4.1. Chapter Overview ..82
4.2. Sampled Data Source ...82

4.3. Putting It All Together ...83
4.4. Running of the Main MATLAB Script for The Mean Eigenvalues Approach......83

4.4.1. Figure Output and Visual Analysis ... 86
4.4.2. Components Dimensionality and Variation Summary Output 88

4.5. Running of The Second-Order Model Script ...90

4.6. Challenges ..91
4.6.1. Lookup Table Size .. 92

4.6.2. Software Required .. 93

4.7. Chapter Summary...93

V. Discussion ...95

5.1. Relevance of the Current Investigation ..95
5.2. Conclusions of Research ..95

5.3. Limitations ...96
5.4. Future Work/Further Research ...96

Appendix I: Results for Sampled Datasets ..98

Appendix II: MATLAB Scripts ...110

Main Script: HornsMethodRandomMEV.m ...110
Main Script: HornsMethodRandom2OM.m ...114

Main Script: HornsMethodSampledMEV.m ..118
Main Script: HornsMethodSampled2OM.m ...124

Supporting Function: EigenMean.m ...129
Supporting Function: findcurves.m ...131

Supporting Function: findcurves2OM.m ..135

Appendix III: Quad Chart ..139

Bibliography ..140

x

List of Figures

Page

Figure 2.1. Kaiser's criterion is always found at λ = 1.0. Size of data shown is 178x13.18

Figure 2.2. Horn’s curve example for a sampled dataset. The point p/2 is approximated

between C6 and C7. Size of data shown is 178x13. 19

Figure 2.3. Scree plot illustrating three possible breaks in slope: Break #1 retains three

roots, Break #2 retains five roots, and Break #3 retains seven roots. 21

Figure 2.4. Scree line with no apparent breaks in slope. ... 22

Figure 2.5. Data sizes of the surveyed, published studies. Axes scales are in hundreds of

thousands.. 29

Figure 2.6. ROI bordered in red. Note clustered studies near the origin. 30

Figure 2.7. Magnified view of studies clustered near the origin. Three points are

underdetermined (below the diagonal). Red ROI border is omitted for

clarity. .. 30

Figure 2.8. Close-up view of the origin. Three points are underdetermined (below the

diagonal). Red ROI border is omitted for clarity ... 31

Figure 3.1. Different values for the number of Monte Carlo simulation iterations on a

common size of random data. .. 42

Figure 3.2. Flowchart diagram of the MATLAB algorithm for Horn’s test on random

data. The red dashed border indicates modular functionality. 43

Figure 3.3. Horn’s test algorithm for random data in MATLAB script. 44

Figure 3.4. Horn’s original figure of the theory put into application. 45

Figure 3.5. Reproduction of Horn’s illustration, this time with varying observations n.

Notice the convergence of rotation in the slope towards unity. 45

Figure 3.6. Fixed p=5 and varying n through 220 increments from 5 to 7,000. 46

Figure 3.7. Fixed p=65 and varying n through 208 increments from 65 to 7,000. 47

Figure 3.8. Fixed p=500 and varying n through 121 increments from 500 to 7,000. 47

Figure 3.9. Comparison of underdetermined, adequate, and minimum fit random curves.

In this example, Components 13-20 have trivial mean eigenvalues (red

ellipse) when n=12. .. 48

Figure 3.10. Flowchart diagram of MATLAB script for Horn’s test on sampled data.

The red dashed border indicates modular functionality. 50

Figure 3.11. Horn’s test algorithm in MATLAB script for sampled data. 51

xi

Figure 3.12. Histogram of curve convergence towards 1.0 for various values of p. Dark

red indicates curves near  = 1.0... 55

Figure 3.13. Two dimensional representation of the lookup table range. A total of

26,650 rows and 1002 columns (78 megabytes of information) are in the

database. ... 57

Figure 3.14. Case of out-of-bounds nearest neighbor find. In Panel A, (p
(-)

, n
(-)

) violates

the minimum constraint n ≥ p. Panel B shows the solution is to set n
(-)

= n
(+)

.

.. 62

Figure 3.15. Trimming of the lookup table T to sub-matrix S, and finally a matrix of only

nearest neighbors data, matrix Y. Only numeric entries comprise actual T,

S, and Y. ... 64

Figure 3.16. Pictorial representation of the upper and lower nearest neighbors curves.

Mean eigenvalue data (not shown) are along the vertical axis. Components

(Ci) are along the horizontal axis. .. 69

Figure 3.17. Interpolation of the upper surrogate curve at (p
(+)

, n′) and the lower

surrogate curve at (p
(-)

, n′). Features created during this step are shown in

red. ... 69

Figure 3.18. A finished, interpolated solution of the estimated Horn’s curve for (p′, n′).

The solution is shown in solid red; the surrogate curves are in view to orient

the interpolation. Each (,)i iC  is representative of a point along the curve.

All
i shown are progeny of the surrogate curves from Y and the nearest

neighbors extracted from T. ... 70

Figure 3.19. A very small dataset. The upper NN curves (blue) cross at p = 5 yet the

surrogate curve stays well-banded. This indicates the interpolation routine

is robust with regard to which line is above or below the other. The figure

legend describes in detail the coordinate pair of each curve drawn. 71

Figure 3.20. A small dataset. Notice the close approximation among the curves. 71

Figure 3.21. A medium dataset. All the curves have converged around the Horn’s

algorithm solution for random data (solid red line). This graphic uses the

same size of data Horn presented in his 1965 paper. 72

Figure 3.22. A large dataset. There is much less to see in differences between mapped

and interpolated in dimensions of this size. ... 72

Figure 3.23. Subplots of Horn’s curves produced from various k iterations of Monte

Carlo simulations. Lines of red circles are MEVs, green lines are the 2OM

fitted curves. ... 76

Figure 3.24. Visual comparison of results for a very small dataset (11,16). 79

Figure 3.25. Visual comparison of results for moderate data size (65, 297). 79

xii

Figure 3.26. Visual comparison of results for larger data size (800, 3266). 79

Figure 4.1. Main program user interface. .. 84

Figure 4.2. Conjunction of sampled and random data components in the finished product

using the interpolated mean eigenvalue (MEV) solution of Horn’s test. 86

Figure 4.3. Detailed description of the interpolated solution of Horn’s test. 87

Figure 4.4. Components dimensionality and variance summary output. 89

Figure 4.5. Interpolated second-order model (2OM) solution of Horn’s test of the

ForestFires dataset. Details are similar to those found in Figure 4.3. 91

Figure AI01. Dataset Forest Fires (Cortez & Morais, 2007) ... 99

Figure AI02. Dataset Glass (Frank & Asuncion, 2010)... 100

Figure AI03. Dataset Parkinsons (Little, McSharry, Roberts, Costello, & Moroz, 2007)

.. 101

Figure AI04. Dataset SECOM (Frank & Asuncion, 2010) .. 102

Figure AI05. Dataset Seeds (Kulczycki, Kowalski, Lukasik, & Zak, 2012)

(Charytanowicz & Niewczas, 2012) .. 103

Figure AI06. Dataset Semeion Handwritten Digit (Semeion Research Center for the

Science of Communication, 2008) ... 104

Figure AI07. Dataset Steel Plates Faults (Semeion Research Center for the Science of

Communication, 2010) .. 105

Figure AI08. Dataset Wisconsin Breast Cancer Study (Original) (Wolberg &

Mangasarian, 1990) (Wolberg W. H., 1992) ... 106

Figure AI09. Dataset Wines (Frank & Asuncion, 2010) ... 107

Figure AI10. Dataset Wine Quality (Cortez, Cerdeira, Almeida, Matos, & Reis, 2009)

.. 108

Figure AI11. Dataset Iris (Frank & Asuncion, 2010) .. 109

xiii

List of Tables

Page

Table 1.1. Component loadings matrix of six variables. ... 3

Table 1.2. Symbols and their meanings used in this thesis. ... 11

Table 2.1. Composite score decision matrix for stopping rule selection. 27

Table 3.1. Point-of-interest (p′, n′) input cases and search method sections. 53

Table 3.2. Granularity intervals in the lookup table. ... 57

Table 3.3. Compressed sample of entries from the lookup table T. Columns extend to

1000 . Diagonal dots indicate sparse columns. Header columns are p and n.

.. 59

Table 3.4. Nearest neighbor search variables naming schema. 60

Table 3.5. Boundary conditions and how to address them in nearest neighbor

assignments. ±5 and ±100 are the maximum granularities for p and n, resp.

.. 61

Table 3.6. Sample of the coefficients lookup table. Total width is five columns–two for

coordinate pair bookkeeping and three for coefficients entries. 75

Table 5.1. Web addresses of each dataset used to test the algorithms. 98

1

HORN’S CURVE ESTIMATION THROUGH MULTI-DIMENSIONAL

INTERPOLATION

I. Introduction

1.1. Background

Prevalent in the fields of applied science is the need to conduct experiments,

collect data, and draw meaningful conclusions from the observations. Quite often data are

multivariate and the simultaneous interactions among all the variables are of interest.

Datasets may consist of hundreds of variables (p) and tens of thousands of samples (n).

Contemporary data storage capacity and computer processing power means it is possible

to access trillions of data bits with little effort or significant cost. Field work is still alive

and well – designing experiments, conducting tests, and recording results are still part of

a scientist’s job description – and the ability to collaborate and instantaneously share

information has transformed almost all walks of research. The researcher would

probably find it useful to describe the relationship between variables without having to

report each and every raw combination of the data. Ideally, no data would be discarded

yet a way to summarize the important information is needed.

1.2. Principal Components Analysis

One of the most commonly used data reduction techniques is called principal

components analysis (PCA). The word ‘principal’ is used to mean that some components

are significant and should be used for further analysis (a process called extraction).

Components not significant should be discarded and excluded from additional analysis.

2

When the principal components have been identified, we speak of the dimensionality of

the data. For example, extracting four principal components of twelve total components

results in a dimensionality of four.

The goal of PCA is to describe as much of the total variance among the variables

as possible by using a smaller number of linear combinations – the principal components

– of the variables without losing useful information (Dillon & Goldstein, 1984). The

benefit of choosing to use PCA is, when adequately determined, the principal

components orthogonally capture the information in new variables which summarize the

original ones, simplifies the analysis, and provides additional insight to the data. In PCA,

information is in the form of total variance and how it is orthogonally dispersed in the

components.

Mathematically, the components are designed to take on as much sample variance

as possible; each component is in fact an eigenvector of the correlation matrix. The

components are ranked (indexed) according to the size of their corresponding

eigenvalues. In this paper, PCA results from only the correlation matrix are used. The

rationale behind this decision is given in Chapter III.

1.3. An Example--Determining Which Component Loadings Are Relevant

 Loading refers to the scaling of the original variables to that of the component

structure. Obtaining the p x p loadings matrix is one of the first step taken after the

components are calculated. The elements of this matrix show each individual correlation

of the variables to the components. The loadings matrix will be used to draw further

inferences regarding the nature of the components. Let’s take a look at an example.

3

 In Table 1.1, we see a 6 x 6 loadings matrix with row and column identifiers. The

source of data is a study of pilots and engineers taken by groups on several motor and

sensory tests (Bauer, 2012). In the first column (on the left side of the matrix) are the

names of the original study variables: ‘Intelligence’, ‘Form Relations’, etc. The

corresponding eigenvalues (λ) ranking of the components for each component is shown

in Row 2. Moving to the right along Row 2, the second column is the value 1.7751 for

C1 (component one), the third column is 1.3544 for C2 (component two) and so on. Each

value in the body of the matrix field represents a loading of correlation coefficients

between the variables and the components. For instance, the loading for ‘Dottings’ and

C1 equals -0.7239.

Table 1.1. Component loadings matrix of six variables.

Still within Table 1.1, under each of the columns for C1, C2, C3, C4, and C5 are a number

of bold and/or underlined values. Bold font indicates a loading strength between [0.5, 1]

or [-1, 0.5] and underlined values are the largest loading for a particular variable. Notice

that C1 has four such loadings under it corresponding to ‘Intelligence’, ‘Dynamometer’,

‘Dottings’, and ‘Perseverance’. Moving to C2, there is only one such loading (‘Form

Data Size

(40x6)
Correlation Matrix Derived Eigenvalues

1 1.7751  2 1.3544  3 1.0727  4 0.8148  5 0.5306  6 0.4524 

Variable Name
Component Number (Ci)

C1 C2 C3 C4 C5 C6

Intelligence -0.5361 -0.4614 -0.4783 0.3546 -0.1532 -0.3489

Form Relations 0.1294 -0.8696 0.1816 0.1188 -0.2041 0.3719

Dynamometer -0.5135 0.2539 0.4484 0.6479 0.1883 0.1248

Dottings -0.7239 0.3660 0.1103 -0.2215 -0.5148 0.1258

Sensory 0.4155 0.4142 -0.6492 0.3604 -0.1466 0.2879

Perseverance -0.7145 -0.1237 -0.4198 -0.2761 0.3789 0.2795

4

Relations’) and similar patterns emerge for C3, C4, and C5. We observe that C6 has no

bold values in its column, indicating it has no strong correlation to any variable.

 The analysis thus far appears mundane. If we take a closer look, this time from a

perspective of the variables, we see that four variables load to one component but the

remaining two, ‘Dynamometer’ and ‘Dottings’, each load under two components.

Perhaps the level of correlation lends insight into what is going on but we have no such

luck. Instead, we are led to the observation that ‘Dynamometer’ is moderately negatively

correlated to C1 (-0.5135) and stronger positively correlated (0.6479) to C4. The pattern

for ‘Dottings’ is equally confounding; it is strongly negatively correlated to C1 (-0.7239)

and lesser so to C5 (-0.6492). We desire good summarization power in the components

but determining how important C1 and C5 are to ‘Dottings’ is not clear. It is incorrect to

assume we will take the larger loadings value of the two components because this

approach violates our intention of explaining maximum total variance. In the case of

‘Dynamometer’, we would lose ((1.775-0.8148)/6)100 = 16% variance in summarizing

power if we adopt this strategy.

 We are seeing these artifacts because the component structure is orthogonal and

each component will explain (or assume) as much of the total variance as possible. The

variance assumption process by the components is mutually exclusive and collectively

exhaustive: The first component explains the largest proportion of total variance, the

second component assumes the next highest proportion, and so on until the last

component explains the remaining amount. As such, the structure expands to fill the

‘variance space’ provided but not all components assume an equal share (the exception

5

being a perfectly orthogonal set of study variables which yield a correlation matrix equal

to the identity matrix). It is justified to be suspect of components with lower ranked

eigenvalues that load just one variable, especially if the variable has loaded to an earlier

component of a higher rank. In these cases, loadings values should not be the primary

discriminator for principal component selection. It can be shown that such cases

represent mathematically true results with no practical interpretation. We are, in some

form, being misled by this sort of variable-component relationship. What we need is a

way to determine the significance of the components. This situation is indicative of the

type problem this thesis seeks to find a solution for.

1.4. Impact of Keeping The Wrong Number of Components: Part I

 In the pilots and engineers example, we observed a myriad of difficulties in pin

pointing the loadings relevance. We can distill all the cases to just two scenarios: Too

few or too many components.

 If too few components are kept, we lose summarizing power because we discard

some proportion of the total variance. Because the variance dispersion among

components is relative to the number of variables in the study, we would omit a nominal

amount of variance if there are hundreds of components available and we choose to

discard many dozens of the smallest components. However, if just a few variables are in

the data, omission of one or two components from further analysis may result in

significant loss of information. We may also find the instance of one or two components

that explain most or all of the variables. While such an act could be considered a feat of

summarization, we are likely more interested in the composite aspect of the component;

6

that is, what hidden feature of the variables does the component explain?

 Conversely, if too many components are kept then we have the case of the

‘phantom’ loading entry; a single, strong correlation that has no practical significance. In

his paper Stopping Rules in Principal Components Analysis: A Comparison of

Heuristical and Statistical Approaches, Jackson states that one variable significantly

loaded to one component "...is not a satisfactory multivariate summary" (1993:2207). In

the case of one-variable-to-one-component, we should consider the summarization has

been effectively watered down; why retain components that add no insight?

 Therefore, given the considerations that too few or too many components is

problematic, our goal should be "...to find the solution, or at least a solution that others

will regard quite highly if not the best." (Horn & Engstrom, 1979:283)

1.4.1. Factor Fission

Factor fission occurs when too many components are extracted, causing loadings

to shift suddenly from lower dimension components to higher dimension ones. While

factor fission does not occur in PCA, it is a concern for factor analysis (FA). It is

mentioned here solely for completeness in regard to the need for an accurate assessment

of component dimensionality. As has been pointed out in literature, PCA and FA share

similar methodology and both make use of the same stopping rules (Velicer, 1976:324)

(Franklin, Gibson, Robertson, Pohlmann, & Fralish, 1995:99) (Zwick & Velicer,

1986:433). The interested reader is directed to the paper Factor Analysis: Limitations

and Alternatives by Ehrenberg & Goodhardt (1976). They provide an excellent example

and thorough analysis of a real-world study in which factor fission occurs. Cattell

7

 (1966:245-247) also gives discussion to factor fission and the number of factors to keep.

 This paper does not explore further other multivariate analysis methods nor the

factor fission phenomenon. The solutions presented by this thesis were evaluated using

PCA methods only; however, by the preceding remarks noted these solutions may be

extended as appropriate to factor analytic techniques.

1.5. Component Extraction Stopping Rules

As we have seen, determining the number of principal components is not always a

straight-forward process. Fortunately, sound guidance exists to help with this task in the

form of component extraction stopping rules. Many such rules exist; however, we shall

see that not all of them perform to the same level of accuracy – there is usually an inverse

relationship between the accuracy of a rule and how easy it is to apply (that is, simple

rules trade accuracy in terms of ease of use and vice versa).

1.6. Analyst Subjectivity

The complex nature of human behavior has not yet been broached. This is not to

say analysts play favorites in reaching conclusions, only that varied personal experiences,

knowledge, and research goals exist in carrying out a study and interpreting the results.

An ideal methodology to determine the number of principal components to retain should

minimize subjective evaluation.

1.7. Problem Statement

The need exists for easy access to an accurate visual analysis component

 extraction stopping rule. A worthwhile endeavor is to design the solution so that it

minimizes the amount of interpretation on behalf of the analyst yet leaves enough latitude

8

for unique conditions or circumstances that exist for all research projects (that is, it does

not tie the hands of the analyst by offering too specific or restrictive results).

1.8. Research Objectives

 The primary objective of this research is to develop an accurate tool determine the

number of principal components to retain when conducting principal component analysis.

The strategy to achieve this objective is to survey published literature for visual analysis

stopping rule candidates, select an appropriate candidate, and automate (i.e., create a

computer algorithm of) the candidate rule to provide the user/analyst with both a

computer program input interface for data selection and a visual output providing a

synopsis of information captured by the principal components in both graphical and

tabulated format. Rather than develop new theory, this thesis uses existing theory to

develop this new analytical capability.

 The secondary objective is to create a parsimonious solution, which minimizes the

size and complexity of the analytical tool created. Once a fully functional algorithm is

created, the algorithm will be refined to enhance user-friendliness, provide guidelines to

interpret the output, and reduce the data footprint required to run the algorithm.

 The intended users of the program are practitioners who need to perform PCA,

have access to a computer running MATLAB® (© 1994-2013 The MathWorks, Inc.)

Version 7 (Release 14) or greater, and understand their data enough to format it properly

for the algorithm. Users require only limited MATLAB skills to enjoy the benefits

achieved by employing the automated rule. Finally, any instructions or interface with the

user will be free of unnecessary and unclear jargon.

9

1.9. Key Concepts

Before proceeding, key concepts should be introduced. They are used throughout

the thesis and being familiar with them will orient later discussion.

1.9.1. Sampled vs. Random Data

Sampled data are gathered from a real-world experiment. Random data, on the

other hand, come from a carefully structured simulation model meant to mimic or make

use of an underlying probability distribution of the system being observed. Random data

does not exist outside the computer. The methodology presented makes extensive use of

both kinds of data. To be distinct in usage, the data origin will be identified.

1.9.2. Use of Ambiguous Terms

Within this thesis, the words ‘factor’ and ‘component’, ‘variable’ and ‘feature’,

and ‘observation’ and ‘sample’ are considered synonymous, respectively. The author

takes no argument with purists and only strives to be flexible in the chosen vocabulary.

1.10. Assumptions/Limitations

All software have design limitations and understanding not only how to use the

software but what goes on (within reason) inside the ‘black box’ is worthy advice. The

MATLAB software package was used to develop the solutions for this thesis and where

possible, built-in functions (those that are provided as part of the licensed MATLAB

library) are used. There are two reasons for this. (1) These functions are generally

optimized for speed and accuracy and (2) built-in functions simplify script structure,

streamline logic, and cut-down on debugging and troubleshooting. The built-in functions

needed to code all techniques for this project have been vetted by the author during

10

multivariate analysis coursework (Bauer, 2012). The vetting process consisted of coding

individually each matrix or matrix function and then comparing the results of similar

MATLAB functions on the same input to produce identical results.

Because infinite combinations of the number of observations, n, and the

dimension of the data, p, exist there is a limitation to the size of problem the algorithm

will be able to solve. A survey of data dimensions found in published analyses was used

to determine the dimensionality of data the algorithm can support. Additional technical

assumptions and limitations regarding data dimensionality are discussed in Chapter III,

Methodology.

1.11. Implications

This thesis does not make the claim of returning an absolute determination of

what dimension a particular study is. Such a statement, if it is possible to prove, is not

within the scope of this thesis. There is as much art as there is science in coming to a

sound conclusion when performing PCA. Consider the outcome of this work as another

tool for the multivariate toolbox. In the output analysis summary (full description in

Chapter IV, Results and Analysis), an estimate of dimensionality is given. A satisfactory

PCA assessment is dependent upon other considerations at play from which the analyst

must draw forth and distill into a meaningful solution.

1.12. Notation

Table 1.2 shows how variables, notation, and symbols are used in this thesis.

Attention was given to use to common statistical terminology. Cells containing " - "

signify meaning or usage has no amplifying information.

11

Table 1.2. Symbols and their meanings used in this thesis.

Symbol or

Abbreviation Meaning Usage

2OM
Second-Order

Model

The linear regression least-squares fitted solution

algorithm for estimating Horn’s curve for random

data using a modified form of the lookup table T.

n -
The number of observations in a dataset;

The number of rows in a matrix.

p -
The number of variables in a dataset;

The number of columns in a matrix.

n x p n by p Size of a matrix.

(p, n) Point (p, n)

Two dimensional placeholder representation of a

data

matrix in Cartesian plane coordinate space; a point

mapped into the lookup tables.

(p′, n′)
User-supplied

parameters

Pronounced "p prime, n prime" it is the point-of-

interest given as input to the solution algorithms.

Ci - Component number or index.

i.i.d. - Independent and identically distributed.

Inf Infinite

Arithmetic representation of values too large to

represent in conventional floating-point format such

as division by zero (The MathWorks, 2012).

K1 Kaiser’s Criterion

A component extraction rule: keep all eigenvalues ≥

1.0. On graphs, occurs as a straight line at y = 1.0

running the width of the horizontal axis

MEV Mean Eigenvalue

Refers to the results of completing Horn’s

algorithm for random data. Usage is not applicable

to scree line results derived from sampled (real-

world) datasets.

n
(-)

, n
(+)

 -
Lower, upper (respectively) NN variables for n

chosen so that
() ()'n n n   are closest.

NaN Not a number

A data type that results from operations having

undefined numerical results (The MathWorks,

2012).

NN
Upper & Lower

Nearest Neighbor

Given a (p′, n′), search T for values of p and n

immediately adjacent to the point-of-interest.

Concept extends to S and Y.

p
(-)

, p
(+)

 -
Lower, upper (respectively) NN variables for p

chosen so that
() ()'p p p   are closest.

()p p
R - Correlation matrix of p rows by p columns.

ROI Region-of-Interest
The 2D area of mapped (preprocessed) MEV data

for select sizes and intervals of (p, n).

12

T -

A user-defined total variance target to be explained

by full or partial selection of component

eigenvalues.

S
Row and column

truncated T

Rows containing p
(-)

, p
(+)

 information used for

nearest neighbor search refinement (child of T)

T
Lookup table

matrix

Shorthand reference to the matrix storing the

mapped ROI data. In Appendix II, the actual

lookup table variable name is tablex (MEV) or

tablexbeta (2OM).

()n p
X -

Data matrix of n rows by p columns.

- In random data, X has random variables

~NID(0,1).

- In sampled data, X has empirical elements.

Y Row truncated S

A four row, subset matrix of S used for the

surrogate curves interpolation routine (grandchild

of T).

xi - A variable in a linear regression model.

xij - A matrix data element at row i and column j.

βi
Lowercase (LC)

beta

Regression coefficient; subscript i indicates order of

the coefficient.

β̂ LC beta hat
Matrix of estimated regression coefficients in the

2OM.

λ LC lambda
Eigenvalue; an element of the hidden component

structure.

i LC lambda bar
Pronounced ""; indicates the arithmetic mean of the

eigenvalue at index i.

ˆ
i LC lambda hat

Pronounced "lambda hat"; indicates the

approximation the linear regression second-order

model produces for the eigenvalue at index i (λi)

1

p

i

i

x


 Uppercase sigma Generic summation of elements xi from 1 to p.

~ Approximately Close to but not exact in value (relational).

~NID(μ,σ
2
) -

Normally and independently distributed of

parameters mean μ and variance σ
2
.

≤
Less than or equal

to
-

≥
Greater than or

equal to
-

± Plus or minus -

≡ Identical to
Denotes "is defined as." Not to be confused with

equality ("=")

13

≠ Not equal to -

text MATLAB origin

A reserved or user-defined command, function, or

variable found in a MATLAB script (program).

May also identify a script or data filename reference

when highlighting adds clarity among body text.

ε LC epsilon

A small value approximating zero;

significantly smaller than others in like comparison;

an error or residual (difference between predicted

and observed regression model values).


The set of natural

number

Integers 1, 2, 3, ..., . In the context of this thesis,

the set does not include zero. To reinforce the

restriction, 0 is specified wherever  is used.

1.13. Chapter Summary

 PCA is a multivariate analysis technique used to summarize total variance of a

dataset through discovery of hidden component structure. This makes analysis more

tractable as not all variables need to be retained for further analysis; the summarization of

the components enables us to find new dimensions in which to express the data. We

learned that components are formed from linear combinations of the original variables.

Each component represents an eigenvector and is ranked by the magnitude of the

corresponding eigenvalue. The orthogonal design of the components is such that the first

principal component assumes as much variance as possible, the second assumes as large a

portion of the remaining share as it can, and so on until the last component accounts for

the remaining small fraction.

We looked at an example of a loadings matrix which is a scaling (or correlation)

of the original variables with the components. We saw that the loadings matrix can be

unclear to decipher and that it is possible for too few or too many components to be

included in the analysis. Hence, there is a need to apply a stopping rule so that one

14

knows when the estimated dimensionality of the components has been determined.

Finally, key terms and definitions of principal components analysis were

introduced. The research objective is to review the literature for an accurate existing

visual analysis component extraction stopping rule and automate it. Automation will

help minimize analyst subjectivity during PCA. The finished algorithm should present an

easy-to-use interface for the analyst and provide an output analysis product with relevant

summary information.

15

II. Literature Review

2.1. Historical Perspectives

The purpose of this chapter is to provide relevant background information

regarding principal components visual analysis stopping rules. Because the methods

discussed are decades old yet still used largely as first developed, understanding the

scope of problems they were invented to solve and limitations in application provides

context to carry forward to later sections of the thesis.

Three such rules were found in the published literature. The reader may find the

discussion on test results of these various techniques enlightening – the findings of three

different papers under at least as many authors are shared – and the perils of

dimensionality assessments done poorly.

Lastly, we examine what a realistic expectation is for how large a multivariate

problem can be evaluated. We do this by surveying the sizes of data in published

researched or of datasets posted to public access websites.

2.1.1. A Note About Verbiage

Because the literature review is a walk through history, the vocabulary

encountered is a mix of old and new. Where possible, explanatory and supporting

graphics make use of the author’s word choices and, if available, the size of data used in

the article. Doing so not only makes it easier to relate a figure to the story in the

literature, but the authors, some of whom are no longer with us, are given a chance to

share their ideas again. Understanding how thoughts and concepts were developed leads

to deeper knowledge of the solutions offered. Therefore, the reader should expect to see

16

apparently inconsistent word usage in different parts of the literature review. By the end

of this chapter, standard terminology is adopted.

2.2. Graphical PCA Techniques

A good place to start a literature review of principal components analysis (PCA)

is with the groundbreaking work done on the topic in the 1960s. The goal of PCA then

was the same as it is today: Given a multivariate data set, provide to the researcher a

reliable statistical tool to either (1) describe the variance shared among variables in a

study or (2) parsimoniously describe the total variance of those variables (Velicer, 1976).

The work done in those decades is fundamental to an understanding of how PCA is

carried out today. The theory and findings of early researchers remain quite relevant and

in use. Therefore, not only is a survey of legacy material justified, it should be done as

due diligence because it is in the original papers that the ground breaking authors share

the theory, application, limitations, and pitfalls of their accomplishments.

Multiple pioneers worked to build the PCA toolbox and a few names and

techniques stand out. Three stopping rules requiring visual analysis are (in chronological

order of first publication) Henry Kaiser’s eigenvalue > 1.0 criterion, John Horn’s curve,

and Raymond Cattell’s scree plot. All were developed before inexpensive and powerful

computers were commonplace.

2.2.1. Scree Line Definition

Fundamental in each rule is the use of a scree line. A scree line is simply a line

drawn in Cartesian coordinates (x-y plane) between each eigenvalue (the y-axis or

ordinate) as the eigenvalues are plotted over the integer index of the corresponding

17

component (along the x-axis or abscissa). In this thesis, the scree line is always

represented by a blue line connected to large orange points when it is drawn in figures.

The description ‘scree’ was chosen (not by this author, but others) because of its

similarity to the rubble that falls off a cliff and slides to the bottom of the hill.

2.2.2. Latent Roots

For each of the methods surveyed, a "latent root" is equivalent to a component

(eigenvector) and the ordering sequence is determined by magnitude (eigenvalue; λ).

Both are results of eigendecomposition of the correlation matrix R.

2.2.3. Kaiser’s Criterion

This is perhaps the most common stopping rule (Velicer, 1976) because it is the easiest to

apply. Found abbreviated as K1 in the literature (Zwick & Velicer, 1986), it states that

the number of factors to be retained is equal to the number of latent roots greater than one

in the observed correlation matrix (Kaiser, 1960). As a visual element in a scree line

graph, Kaiser’s criterion appears as a straight line at λ = 1.0 running the length of the

horizontal axis over successive components Ci. The rule is simple: Components above

the line are principal, the ones below the line are not. The rationale can be considered

from the perspective of what makes an effective executive summary: One would not

write a lengthier synopsis than the source is long.

 Figure 2.1 shows an example of the rule being applied. Here, components C1, C2,

and C3 have eigenvalues greater than one and are above the K1 line – they would be

retained as principal components. The rest (C4 - C13) are below it (1 ≥ λ > 0) and would

be discarded as not significant to further principal components analysis.

18

Figure 2.1. Kaiser's criterion is always found at λ = 1.0. Size of data shown is 178x13.

2.2.3.1. Considerations Regarding Kaiser’s Criterion

Kaiser's criterion performs in a binary manner; that is, the distinction is either

above or below λ = 1.0. There might be subtleties that require closer inspection. Is there

a practical significant difference between λ = 1.01 and λ = 0.99? Horn has pointed out

K1fails to recognize sampling error due in part to the assumption that K1 operates on

population parameters assuming infinite sample size (Horn, 1965:181).

2.2.4. Horn’s Test

 John L. Horn’s paper A Rationale and Test for The Number of Factors in Factor

Analysis (1965) describes what has come to be known as Horn’s test or Horn’s

procedure. Also called parallel analysis or PA (Zwick & Velicer, 1986) (Franklin,

Gibson, Robertson, Pohlmann, & Fralish, 1995), Horn begins with the following theory.

If we let k be large and if k sets of size n x p are drawn randomly from a population of

numbers independently and identically distributed (i.i.d.) according to the normal

19

probability density function, the p x p matrix of correlation coefficients R will

approximate an identity matrix. Within R is a set of latent, positively-valued roots and

each root accounts for some amount of variance within each p inter-correlated variables.

As in K1, these latent roots are eigenvectors and are ranked according to the size of the

eigenvalues from eigendecomposition of R. What is new is Horn’s curve is formed from

the means of each ranked eigenvalue (amplification of the technical details is given in

Chapter III). Should an infinite sample size be considered, all correlation coefficients

will equal 1.0. In an actual experiment, however, the researcher must contend with a

much smaller sample size and the accompanying sampling error and least-squares

Figure 2.2. Horn’s curve example for a sampled dataset. The point p/2 is approximated

between C6 and C7. Size of data shown is 178x13.

‘bias’ (1965:180). If we consider these elements as simply ‘error,’ then we can illustrate

how the combination of the two has inflated the correlation in R for the first p/2

components. In Figure 2.2, the scree line represents the data sample. By comparing its

20

slope to that of the error induced curvature for the population (red line; Horn’s curve),

we can measure the difference between the two, adjust the analysis for it, and reach a

reasonable conclusion of how much of the variance is due to sampling error.

 What Horn proposes is a method to separate signal from noise; in other words,

distinguish meaningful information in the data by adjusting for the amount of error

expected due to random chance. Therefore, an estimate of the level of noise in a sample

provides an indication which components should be considered for extraction. Expressed

graphically, Horn's curve estimates the pure error in the sample. Eigenvalues above the

curve contain useful information; eigenvalues below the curve (and especially beyond

p/2) are ‘noisy’ and should be discarded.

2.2.4.1. Considerations Regarding Horn’s Test

 Horn’s test is not widely used because it requires a large amount of simulated data

to be generated for each n x p of interest (Monte Carlo simulation of repeated random

draws from a standard normal probability distribution). As such, it carries a data

footprint with it in the form of preprocessed data tables or requires lengthy on-the-fly

calculations. Monte Carlo simulations for large n x p can take a significant amount of

time to complete and if there is another stopping rule available, it is possible practitioners

would prefer to use the quicker solution. Because modern computers can make easy

work of the techniques Horn describes, this limitation can be mitigated.

2.2.5. Cattell’s Scree Plot

Introduced by Raymond B. Cattell (1966) the scree plot begins with a typical

scree line and then looks for breaks in the scree line slope. To perform the scree plot test,

21

the scree line is first drawn. Any abrupt changes (or breaks) in slope along the scree line

are noted, particularly the first one to occur (i.e., closest to the vertical axis). Next, the

analyst traces a line segment using two points – the first at the last eigenvalue in the

sequence (at Cp), the second at the eigenvalue where the break in slope was noted – and

Figure 2.3. Scree plot illustrating three possible breaks in slope: Break #1 retains three

roots, Break #2 retains five roots, and Break #3 retains seven roots.

retains the eigenvalues above the traced line and discards the ones below it. Because

each eigenvalue represents one corresponding component, by corollary an estimation of

dimensionality has been made. Figure 2.3. illustrates the concept; the black, green, and

red lines are all drawn in the manner described.

 Cattell admits there is an art to the effective use of this technique and the

application requires a thorough understanding of the process subtleties (1966:256-261).

When using this method, questions to ask are "Is there more than one break indicating

multi-modal data?", "How should the inherent changes in line inflection be evaluated?"

22

Figure 2.4. Scree line with no apparent breaks in slope.

and "What if there are no apparent breaks in the scree line?"

 In concluding his paper, Cattell states (p. 273) “There is no true thing as ‘the true

number of factors to extract’....Consequently, the cut-off point in extraction is best

decided by a conception of non-trivial common variance…” He then provides a series of

suggestions to consider, all of which are not applicable to visual analysis techniques so

they are excluded from further discussion (pp. 273-274).

2.2.5.1. Considerations Regarding Cattell’s Scree Plot

 Cattell’s method is open to subjective interpretation on part of the user, something

we stated we wish to minimize in our candidate stopping rule. In Figure 2.3. we have the

case of multiple choices of breaks in the scree lines and in Figure 2.4. we have exactly

the opposite--no apparent break in slope at all. However, it is more likely in practice that

the situation encountered in Figure 2.3 will be found than of that in Figure 2.4. There is

not much ground to be gained by automating the scree plot; however, it will not be ruled

23

out as a candidate at this time.

2.3. Objective Evaluations of Stopping Rules Accuracies

 The next part of the literature review is a survey of three different journal articles,

each performing comparative tests of the stopping rules we have examined. Each article

tested many different stopping rules; however, our scope is limited to discussion of the

findings summarized in Table 2.1 for the three graphical techniques of interest to us.

2.3.1. Summary of Test Findings--Zwick and Velicer

 In broad discussion, Zwick and Velicer determined that PA was overall the most

accurate method they tested; however, depending on the composition of the test data, PA

could perform slightly different with different sample sizes (1986:434).

 They did not recommend K1 for PCA as it consistently overestimated the number

of major components. Velicer, in an earlier work, makes the statement that Kaiser’s

greater than unity rule and the scree test both have been criticized as either too subjective

or too arbitrary (Velicer, 1976:322). The criticism of K1 a decade later is stronger: “The

use of the K1 rule as the default value [in popular statistics software] is an explicit

endorsement, particularly to naïve users…seems to guarantee that a large number of

incorrect findings will continue to be reported.” (Zwick & Velicer, 1986:439). Despite

positive aspects of the scree test, they did not recommend it, as the subjectivity in using it

invites concerns regarding the practitioner’s reliability. However, the scree may be

useful as an initial estimate or as a method complementary to PA. The major drawback

of using PA is the need to generate large sets of correlation matrices at the particular

combination of n x p (Zwick & Velicer, 1986:441).

24

 Their chosen test method generated five sample correlation matrices from 48

known population correlation matrices (at each of two sample sizes). There were six

levels of component pattern complexity in the 48 correlation matrices. The approach was

similar to the "middle model" of work published by Tucker et al. in 1969 (Zwick &

Velicer, 1986:435).

2.3.2. Summary of Test Findings--Jackson

 Jackson did not include PA in his analyses; however, under discussion of the

scree plot he recognizes Horn’s 1965 paper and restates its methods but does not use it in

forming a solution (he uses Cattell’s 1966 procedure as outlined). Jackson found that K1

tended to overestimate the number of dimensions to retain and the scree plot tended to

consistently retain one too many components (1993:2211). Jackson’s test data consisted

of simulated data matrices of uniform correlation structure, patterned matrices of varying

correlation structure, and three ecological-based datasets of lake water samples.

2.3.3. Summary of Test Findings--Peres-Neto et al.

 The most recent comparative study surveyed was published by Peres-Neto,

Jackson, and Somers (2005). In total, they compared 20 PCA methods, two of which are

of interest to this thesis (K1 and PA; the scree plot was not part of the test group). Their

results suggest that irrespective of matrix size and type of distribution, PA was one of the

most accurate rules overall and called it "...[one of] the most promising rules for

component evaluation" (p. 994). K1 performed poorly and was removed from

further inspection due to poor performance.

 Their chosen test methodology included Monte Carlo protocol produced

25

 correlation matrices in 9 or 18 variables with known non-trivial components. Trivial

components were degenerate and carried only noise. In total, fourteen different designs

of correlation matrices were used.

2.4. Impact of Keeping The Wrong Number of Components: Part II

 In Chapter I we made an observation from the loadings matrix example (Table

1.1) that a need exists to balance summary with clarity. Which is the greater PCA

misstep: Retention of excessive trivial principal components (too many components) or

including only those that are unambiguously relevant to the analysis (too few

components)?

 Cattell is of the opinion (1966:246, 275) that allowing some amount of variance

(error) into the analysis is acceptable and is even encouraged; this is accomplished by

permitting an extra component into the analysis. If the aim of the PCA is exploratory in

nature, this approach may be well-suited. Note that Cattell frames his discussion from a

factor analysis perspective. Interested readers are encouraged to reference his 1966 paper

The Scree Test for The Number of Factors paying particular attention to pages 245-247.

 Zwick and Velicer give three factor desirability guidelines to consider when

determining an experimental goal (1986:432-433). They recommend (1) a component

have three significant (non-zero) loadings to be useful; (2) summarizing power greater

than 1.0; and (3) non-negative reliability (a reference to a test design statistic). Zwick

and Velicer categorize the interest components have to a researcher as:

- Major components have three or more substantial loadings and are probably

of interest;

26

- Minor components have less than three substantial loadings but an eigen-

 value greater than 1.0 or an eigenvalue less than 1.0 but with three or more

substantial loadings are probably of interest;

- Trivial components have an eigenvalue less than 1.0 and less than three

 substantial loadings should not be retained.

Peres-Neto et al. investigated the matter and found that over extraction might not

be as serious a problem as under extraction (2005:994), the reason being earlier

components (those with larger eigenvalues) have higher amounts of variance. Thus, if

too many components are kept, one is likely to be retaining a small amount excess

variance instead of cutting out a large amount of useful information by under extracting.

2.5. Summary of Component Extraction Stopping Rules

 We now have the information necessary to select a stopping rule candidate.

Based upon the observations and findings of the literature review, this author's collective

thoughts of what he has read and of what others have published and a summary of the

component extraction stopping rules accuracy tests, the following criteria will be used to

select a component extraction stopping methodology:

 - Be a visual analysis method;

 - Reduce unnecessary subjectivity on behalf of the analyst; and

 - Produce accurate dimensionality estimates.

Table 2.1 is a chart of the benefits and limitations of the stopping rules, how they

compared to each other in independent testing, and an overall assessment. From it we

can make a conclusion regarding which candidate to select for development.

27

Table 2.1. Composite score decision matrix for stopping rule selection.

 Test Method Candidates

 Kaiser’s Criterion

(K1)

Horn’s Method

(Parallel Analysis)

Cattell’s Scree

Plot

L
it

er
at

u
re

R
ev

ie
w

F
in

d
in

g
s Pro

Easiest to apply,

very popular

Accounts for error

in the sample

Flexible; analyst

can make choices

Con
Inflexible due to the

go/no-go results

Requires large

amount of random

data for each n x p

Possibly misleading

if scree line has

complex slope

C
o
m

p
ar

at
iv

e
T

es
ts

F
in

d
in

g
s

Zwick &

Velicer

(1986)

Not recommended

for PCA

Recommended;

regarded as most

accurate

Recommended;

esp. for experienced

investigators

Jackson

(1993)

Overestimates non-

trivial dimensions
(Not evaluated)

Overestimated

interpretable

components

Peres-

Neto et

al.

(2005)

Removed from

further testing due

to poor

performance

One of the most

accurate overall
(Not evaluated)

Assessment
Nothing to gain by

automating

Software can

provide demand for

data ‘overhead’

Would require

practitioner

training, experience

Conclusion Not selected Selected Not selected

Of the stopping rules surveyed, Horn’s method offers the advantages of accurate

estimation, is not prone to subjective analysis, and has familiar key features of the other

methods (e.g., the scree line and reference to λ = 1.0). Having this quality (i.e., familiar

features) was not part of the original research objective, but knowing now that K1 –

despite its misgivings – is a popular rule, incorporating the λ = 1.0 element can provide

an additional benchmark without compromising the automation goal.

 In order to make effective use of time processing random data for Horn’s test, we

need to first determine what sizes of data are found in published works. The size and

number of problems the algorithm can answer will be limited. Preliminary surveys (the

28

technical challenge will be left for discussion in Chapter III) provide insight on just how

large a dataset a ‘typical dataset’ might be.

2.6. Expected n x p of Research

 While more data is usually a good thing, at some point too much becomes

overwhelming. It is not a research objective to provide Horn’s curve for every possible

experiment because there are infinite combinations of n x p. Instead, the effort is to work

smarter, not harder, and frame the n x p solution in terms of a region-of-interest (ROI); a

two-dimensional area defining practical and relevant bounds of both n and p.

 During the literature review, each article and web search using a dataset of stated

n observations and p variables was recorded. (Note: Not all literature revealed their

sample sizes and member variables; some articles stated only summary findings.) To

adequately define the ROI, actual data was not of import, only the n x p dimensions. The

goal is to gain understanding of what data sizes are expected in the research community.

Of particular benefit was the Machine Learning Repository (University of California-

Irvine, 2007). The UCI website is replete with donated multivariate data and organizes

its database by field of research, data sizes, year the research was conducted, and purpose

(classification, regression, etc.). To narrow the problem scope, multivariate listings that

had at least one publication citation were logged. Using this criterion, 156 such datasets

were recorded. Within the published literature, 22 instances of listed data sizes were

found. Altogether, this represents 178 ‘samples’ of empirical research; Figure 2.5 shows

how they are clustered.

29

Figure 2.5. Data sizes of the surveyed, published studies. Axes scales are in hundreds of

thousands.

The area in Figure 2.5 is too broad a range of n x p to work in; the amount of

sparsity present suggests that mega-sized datasets are not the norm. Note that the green

points, representing the computer science field, are very large in one or both dimensions

and represent most of the outliers. These datasets contain information such as web page

visits, online user surveys, and optical recognition of character symbols. It is not

unexpected that automated data collection routines and the sheer volume of Internet

activity results in such large datasets.

To reduce the outlier clutter, filtering is done on studies that number fewer than

10,000 observations. One hundred and forty three studies are in this range (Figure 2.6).

A reasonable portion from which to form the ROI appears in the red bordered area; this

area encompasses studies having 1 to 1,000 variables p and 1 to 7,000 observations n.

Defining the ROI in this manner captures 80.3% of the original 178 n x p ‘samples.’

30

Figure 2.6. ROI bordered in red. Note clustered studies near the origin.

Figure 2.7. Magnified view of studies clustered near the origin. Three points are

underdetermined (below the diagonal). Red ROI border is omitted for clarity.

31

 In Figure 2.7 a magnified view of the lower part of the ROI is presented; here we

can see the individual elements (studies) and how the pattern appears to be most

published multivariate work contains fewer than ~150 variables and 500 or so instances.

The number of studies in this group is 111 (62.4%).

Figure 2.8. Close-up view of the origin. Three points are underdetermined (below the

diagonal). Red ROI border is omitted for clarity

The final snapshot of the ROI is taken by scaling the sample size down to n ≤ 500.

Here we have a satisfactory view of the grouping near the origin at (0, 0). As shown in

Figure 2.8, the number of studies within this range are 75 (42.1% of the 178). At this

resolution there is enough detail to see that studies having underdetermined data are rare,

accounting for only 3 of 75 (0.4%) of the works noted. The matter of underdetermined

data (more variables than observations in a study) will be revisited in detail during

Chapter III, Section 3.7. For now, it is sufficient to say underdetermined data presents

technical challenges and all such datasets will be excluded from analysis.

32

2.7. Chapter Summary

In this chapter the literature was reviewed for visual analysis component

extraction stopping rules. Three candidates were found:

- Kaiser’s criterion (K1);

- Cattell’s scree plot; and

- Horn’s test.

Each test has its own drawback design limitation. In particular, Horn’s test requires a

large amount of random data evaluation before it can provide a dimensionality estimate

for a sampled data set. Graphically, Horn’s procedure appears to incorporate features of

both the scree plot and K1.

 To gauge how well each candidate performs in determining the number of

principal components, three published articles on comparative evaluation of stopping

rules were reviewed. These papers put each stopping rule under test using carefully

constructed simulation data of which the dimensionality was predetermined. Horn’s test

received high marks for being one of the most accurate methods tested. K1 tended to

overestimate the number of principal components (that is, ‘noisy’ components with little

substantive value were included in the dimensionality determination). The scree plot was

accurate in its dimensionality estimates as long as the practitioner was experienced with

the technique. The summary observations, findings, and candidate selections are listed in

Table 2.1.

We approached the question of how many factors to retain once more (first

presented in Chapter I), this time reviewing what other authors had found. Most stated it

33

is better to include too many components rather than too few, as leaving components out

may discard useful information (i.e., variance) in the eigenvalues.

At the end of the stopping rules survey, it was apparent that Horn’s test is the

smart choice for algorithm development and has been selected as our candidate. The data

requirements needed to run the routine had to be addressed, so a survey of the published

literature (both printed and found in the UCI Internet database) was conducted to

determine what sizes of n x p are likely to be found in experimental studies. The ROI

was identified and the data processing budget was centered on an area encompassing

roughly 1 to 1,000 variables p and 1 to 7,000 observations n. We want the algorithm to

be of practical utility to multivariate practitioners and mapping of the ROI will build-in

value.

34

III. Methodology

3.1. Chapter Overview

This chapter discusses the methodology used for completion of this thesis.

Starting with Horn’s ideas in A Rationale and Test for The Number of Factors in Factor

Analysis (1965), we develop the ideas and thought processes and move toward a

functioning MATLAB algorithm.

We start the journey with the thought we have some sense of direction but are not

completely sure what we will find. Horn gave us all the parts of how and why the

procedure works. The exact process – the writing of the algorithm – does not contain any

surprises but it does require some careful thought about how to set the stage. These next

few paragraphs will discuss the integration of the parts to a whole and why decisions

have the outcomes that they do. Since we are exploring, taking time to visually see what

is happening in the data is often more revealing than staring at a column of numbers –

visual evidence is often quite compelling. The theory and rationale as a whole are first

introduced and as we progress, supporting concepts are visited:

- Monte Carlo simulation (MCS);

- Scree lines characteristics;

- Refinement of the region-of-interest (ROI);

- Lookup table characteristics;

- Linear interpolation and nearest neighbors (NN) search;

- Linear regression second-order model; and

- Sampled data algorithm.

35

At chapter end preliminary results will be demonstrated as well as side-by-side

comparisons of the two solution approaches (a mean eigenvalue routine and a linear

regression second-order model).

3.1.1. Mean Eigenvalue (MEV) Solution

 The first solution strategy is a pre-processed table of data capable of producing an

on-the-fly estimation of Horn’s curve. In Section 2.6 we observed that not every possible

n x p combination is of interest to us. Therefore, an interpolating function is needed to

find intermediate n x p solutions that fall within the ROI but for which we do not have

specific information for. MEV is the most direct route to a solution but it is the most

burdened with the data overhead it requires. The MEV solution will be developed first.

3.1.2. Linear Regression Second-Order Model (2OM) Solution

 The second approach is to build a 2OM model on the framework of the MEV

solution. Depending on the model coefficients, a second-order polynomial can produce a

curve ranging from a parabola to a nearly straight line (we assume the quadratic

coefficient is not zero; otherwise, we would choose a first-order model). We maintain the

MEV constraints on n x p data selection plus the requirement that Horn’s curve be ‘well-

behaved’ (i.e., it has predictable properties for all points within the ROI). The response

function that captures this requirement is strictly monotonically decreasing.

3.2. Motivation

As was shown in the literature review, Horn’s technique is generally regarded as

producing an accurate assessment of component dimensionality. Its drawback is the need

to generate large amounts of random, normally distributed data. In the decades since

36

Horn first described the technique, advances in computer resources have made it possible

to automate a fast running algorithm and computer memory and hard drive storage is

abundant. The impact of a large data footprint can be minimized.

3.3. Theory of Horn’s Test

 We begin by letting n = sample size, p = number of variables, and k = a large

number of Monte Carlo simulation (MCS) iterations. The random variable distribution is

configured standard normal (population parameters mean μ = 0 and variance σ
2
 = 1)

within the MCS. If Ip is the p x p identity matrix, the individual elements xij of random

data matrix X are

  
{1,2,..., 1, }

~ 0, where
{1,2,..., 1, }

ij P

i n n
x NID

j p p

 


 
I (3.1)

Upon each increment of k, a new data matrix X of random variables is produced. It

should be emphasized that each element in X is created i.i.d. during each iteration. There

 is no recycling of data between iterations.

3.3.1. Correlation of The Random Data

The correlation operator on
n pX is consistent with Horn's methodology

(1965:179-182) and by evaluating correlation results scaling difficulties and nonsensical

units of measure are eliminated. The eigenvalues i are extracted from the resultant

correlation matrix
p pR by determining the linear combination

1

0
p

i i

i

a C


 of the

variables 1 2 1, ,..., ,p pC C C C having maximum sample variance, rank-ordered from largest

to smallest (by index i: i = 1, 2, …, p-1, p), and then averaged by index. In notation, the

37

 steps are:

 Correlation operations on n p p p  X X R (3.2)

 1 2 1Eigenvalue extraction and sorting p p p p         R (3.3)

1

Sum within each sorted index
k

i

j

i


 (3.4)

and finally the average eigenvalues are sorted and summed by index

1 2 1

1 1 1 1

1
, , , ,

k k k k

p p

j j j j

MEV
k

   

   

 
   

 
   λ (3.5)

and stored in vector format for further use. The symbol i ("lambda bar sub i") denotes

the MEV for component i where i ∈{1,2,...,p-1, p}. Vector λ , Equation (3.5), contains

all the ordinate information for completing Horn’s curve.

 By rank-ordering the eigenvalues from highest to lowest, summing within each

rank (index), and then averaging the indexes, a picture of how much total, or common,

variance each eigenvector represents emerges. A natural next step is to use the

mathematical properties of the components to study the behavior of the original variables

expressed in new combinations of each other.

 In contrast to sampling theory not all eigenvalues are equal in the real-world but

they all sum to the number of variables in
p pR .

 1 2 3 1

1

...
p

i p p

i

p     



       (3.6)

This is an interesting property regarding eigenvalues of the correlation matrix – a total of

p eigenvalues, equal to the number of columns (each column representing one variable)

38

in R – collectively sum to p. In PCA, we take advantage of this relationship in two ways.

One, it is straightforward to determine the fraction of total variance the i
th

 component

explains from the equation

 , : , (0)i i p i p
p


   (3.7)

By extension, we reach advantage two: A target variance T can be chosen by the

practitioner and approximated by selecting a full or partial sum of j eigenvalues

1

 : , , (0)1

0 1

j

i

i

j p i j p
T

Tp




  
 

 
 (3.8)

Note that while T may be any value, the number of eigenvalues is discrete so an exact

summation to T is not likely; T is more properly used as a threshold. The art of target

variance application should be done before the dimensionality assessment. How much

variance the researcher wishes to summarize should be kept in sight of determining how

many principal components to retain as the two are directly linked.

3.3.2. Covariance Instead of Correlation

 PCA can be performed using the covariance operator; however, the sample

variables should be similar sized and of consistent measurement categories. As was

previously stated, choosing to work with the correlation matrix eliminates unusual units

of measure that may not be apparent without dimensional analysis of the variables.

Hence, the algorithm born in this thesis is applicable only to summary statistics from

correlation operations. Readers proficient in MATLAB coding and who require the use

of variance-covariance operations are encouraged to make the necessary modifications to

the algorithm (located in Appendix II).

39

3.4. Monte Carlo Simulation

In his paper, Horn mentions "...sets of very large samples of size...drawn

independently from a normally distributed population of random numbers..." and

"...Insofar as [the iterations] are reasonably large, these averages give Ra [Figure 3.4; the

curve of random data for large observations]." (1965:179; 182). An appropriate routine

to the large random samples requirement is Monte Carlo simulation (MCS), the technique

of using repeated sampling to determine properties or behavior of some phenomenon.

Formally, Sawilowsky (2003:219), refers to MCS as “... an explicit reference to the use

of repetition as a method of discovery of the long run outcome of an event.”

Given that the parameter of interest θ is the magnitude of each rank-ordered

component (the mean eigenvalues where 1,2,...,i i p ), we let X be a discrete random

vector and the parameter of interest the some specified function h is

1

[()] () { }j j

j

E h h x P x




  X X (3.9)

When ()jh x is difficult to evaluate, the use of random numbers can be used to generate a

partial sequence of i.i.d. random vectors X1, X2,…,Xn having the mass function P{X =

xj}, j ≥ 1 (Ross, 2007:247-248). The strong law of large numbers yields

1

()
lim

k
i

k
i

h

k






X

 (3.10)

Therefore, for large k the average approximates . The strong law of large numbers

guarantees the approximation to the parameter as k, the number of iterations, becomes

large. Further details regarding choosing k are discussed in Sections 3.4.2 and 3.12.2.

40

3.4.1. Random Number Generator

MATLAB contains varied (pseudo)random number generator functions (PRNG)

and user-adjustable parameters. MATLAB version 7.12.0.0635 (release R2011a) was

used for all scripting. Prior to Version 7.7, the seeding of the random number generator

was somewhat confusing and at risk of being misapplied (The MathWorks, 2012).

Because of this, the rng function was introduced. By setting rng(z), where z is non-

negative integer, the programmer controls the stream used by the random number

generator functions – these functions include the normrnd call shown in Figure 3.3.

In all instances, the PRNG is set arbitrarily to stream zero when the Horn’s test

 algorithm begins by the scripted line rng(0), returning the PRNG to its default setting

of using the Mersenne twister algorithm; its period is 2
19937

-1) (Matsumoto, 2011).

Resetting the PRNG allows control over duplication of results should similar batches of

data be required. Once the script points to rng(0) it is not called again until after

execution halts and before a new round of MCS begins – it is never reset when the

system state is busy.

Readers wishing to adapt this routine to their use should determine what version

of MATLAB they are using. If rng causes execution halts (errors), legacy random

number generator functions will be required (such as rand and randn). Another

consideration: Code that ‘flip-flops’ between current and legacy random number syntax

should reset the random number state using the command rng default. For more

information, see the MATLAB User Guide, specifically the documents Updating Your

Random Number Generator Syntax and Controlling Random Number Generation.

41

3.4.2. The Importance of Selecting Sufficient Monte Carlo Iterations

 There are two reasons a sufficiently large value of k is not only desired, but

critical to successful algorithm implementation. The first is there has to be enough

opportunity for the means of the eigenvalues   to approximate the steady state at θi.

Steady state is a somewhat of a misnomer because Horn’s procedure does not require

time series data nor does it experience a warm-up transient period in the simulation.

Larger values of k move to convergence at the true mean of each eigenvalue, yielding

increased precision at the cost of longer processing time. Smaller k requires less

computation effort and, considering the amount of random data that must be found, is

desirable but not so at the expense of inaccurate results for  . A balance of timeliness

and accuracy is required.

 Exploratory runs with varying levels of k show an exploitable trend. Figure 3.1

illustrates the convergence of the MEVs as k is increased. Panel A shows k from 10 to

10,000. Note k = 10 (magenta line) does not band tightly with the others; it is a poorer

fit. Visually, it appears k = 100 is a good balance between convergence and computation

effort. Panel B shows the chosen k = 100 compared to k = 10,000; the fit is satisfactory.

Because of these reasons (fit vs. effort), k = 100 is used in the algorithm found in Figure

3.3 for the remaining thesis work.

42

Figure 3.1. Different values for the number of Monte Carlo simulation iterations on a

common size of random data.

3.5. Flowchart of Horn’s Algorithm for Random Data

It may be of value to view the algorithm from a function perspective; that is, once

the input parameters n, p, and k are defined, everything is self-contained to generate in-

turn an output for the next step of the solution. The flowchart and pseudo code shown in

Figure 3.2 were easily scripted into a MATLAB .m file. The script shown in Figure 3.3

was written as a function because of its specialized purpose. Figure 3.3 is an executable

MATLAB .m file – the inputs are values for p, n, and k – for Equations (3.1) - (3.5). The

resultant vector EigenMean is applied in developing plots, graphs, the lookup table

values, second-order model coefficients. It encapsulates the information needed to

produce an estimation of Horn’s curve.

43

Figure 3.2. Flowchart diagram of the MATLAB algorithm for Horn’s test on random

data. The red dashed border indicates modular functionality.

44

Figure 3.3. Horn’s test algorithm for random data in MATLAB script.

3.6. Characteristics of Scree Lines

 Now that we have a working algorithm, we are motivated to pause and perform a

progress check. Horn provided a figure in his paper (1965:184) to illustrate parallel

analysis in action. It is reproduced here in Figure 3.4 with some embellishments to

highlight the key features. Curve A (blue circle) is the scree line from actual data, curve

Ra (red circle) is from the idealized random data, and the intersection of the curves (green

rectangle) indicates estimated component dimensionality. Because we do not have the

original data set, only the n x p size, it is not possible to reproduce curve A. However, it

 %******Horn's Procedure using RANDOM DATA in simple MATLAB script.*********
%******Does not contain plotting or error checking routines.***************

%

%Variables:

%p = # of variables; set through interactive input or hard coded

%n = # of observations; set through interactive input or hard coded

%k = # of Monte Carlo simulation iterations

%X = matrix of random variables ~NID(0,1)

%V = eigenvectors returned from 'eig' call. Used for component loading

% and confirmatory testing. Not needed for Horn's curve

%D = eigenvalues of R returned from 'eig' call. Essential!

%->Note 1: Sampled data is not averaged; it is what it is

%->Note 2: X must lead to invertible R for 'eig' to complete

% Therefore, X might need to be manually conditioned

% for multicollinearity, NaN, linear dependence, etc

%initialize variables/starting conditions

EigenMean = diag(zeros(p))'; %preallocate array of mean eigenvalues
rng(0); %seed the random number generator
%loop runs Monte Carlo sim (random data draws) on the chosen size data

for i = 1:k
 X = normrnd(0,1,n,p); %random data matrix X size n x p

 %elements of X are iid ~N(0,1)
 R = corr(X); %Correlation matrix of X
 [V,D] = eig(R); %(V) eigenvectors, (D) eigenvalues
 D = sort(diag(D),'descend')'; %sort 'eig' result from large to small
 EigenMean = EigenMean + D; %Add each eigenvalue by array index
end

%**********************************Result*********************************

%'EigenMean' is the vector of eigenvalue means over all k iterations.

EigenMean = (EigenMean.*(1/k));

%***

%

%end of program.

45

Figure 3.4. Horn’s original figure of the theory put into application.

Figure 3.5. Reproduction of Horn’s illustration, this time with varying observations n.

Notice the convergence of rotation in the slope towards unity.

is possible to produce curve Ra simply by knowing the data size. We do this in the upper

left subplot of Figure 3.5. To help visualize the concept that as n approaches infinity the

slope of the ideal curve goes to zero at unity, we can fix p at a particular value and

46

observe what happens as we increase n. We can see here that the differences between

the components becomes less and less as observations increase; this is due to an

equalizing of total variance among the components. The dominant components ‘lose’ a

percentage of variance, the smaller ones ‘gain’ variance. In theory, if the sample size

were taken to infinity, they will all account for an equal portion of the total variance.

Figure 3.6. Fixed p=5 and varying n through 220 increments from 5 to 7,000.

 To further our understanding Figure 3.6 is introduced, illustrating the progression

of the slope towards zero as the variable is held fixed. This time, we observe a small

number of variables (p = 5) and observe the rotation behavior in both speed of

convergence (large jumps between ordinate axis values – the mean eigenvalues – indicate

rapid movement; no gap shows very little change in slope). Notice that the density of

curves is closest to the 1.0 reference line. The ratio of n to p varies from 1:1 at the start

of the sequence to 1400:1 when the 7,000 maximum observations are reached.

 If we repeat the process, this time for using Horn’s example of p = 65, we see

47

Figure 3.7. Fixed p=65 and varying n through 208 increments from 65 to 7,000.

Figure 3.8. Fixed p=500 and varying n through 121 increments from 500 to 7,000.

similar results (Figure 3.7) without large jumps towards zero slope and the convergence

towards unity is not as tight. The starting n:p ratio is 1:1; at completion it is 108:1.

The final graphic (Figure 3.8) in this group is p = 500 variables plotted against the

same maximum number of rotations. We observe no unexpected trends.

48

The jump size is no longer discernible and the rotations are exhausted further away from

the reference line. The starting n:p ratio is 1:1 and at completion is just 14:1.

3.7. Rationale for Excluding Underdetermined Data

 When there are more variables (columns) than observations (rows) in a matrix

full rank is not possible. If p > n at least one of the eigenvalues is zero and the

determinant of R = 0. This case is called underdetermined. Figure 3.9 is a comparison of

curves for underdetermined (p > n), overdetermined (or adequate; p < n), and minimum

(n = p) fitted data.

Figure 3.9. Comparison of underdetermined, adequate, and minimum fit random curves.

In this example, Components 13-20 have trivial mean eigenvalues (red ellipse) when

n=12.

In Figure 3.9 we see an example of each type of these curves. Notice that the last eight

MEVs equal zero for the underdetermined data (orange curve, lower right corner). This

is not a random event; the initial conditions for the underdetermined data are p = 20 and

n = 12.

49

There are three reasons to be concerned with inclusion of underdetermined data into the

lookup table.

(1) We desire useful components for dimensionality reduction. If we have

 multiple zero-valued components, information has already been lost

 before starting PCA.

(2) MEVs do not meet our criterion that the curve be strictly monotonically

 decreasing 1 2 1... p p       in the interval
1 2 1, ,..., ,p pC C C C

  

 because we find  0 :iC i i p n     . In the sample of curves shown

 in Figure 3.9, components 13 14 19 20... 0C C C C     and therefore the

 requirement is violated.

(3) To capitalize on what is useful in terms of relevant multivariate research,

 only data of practical value will be pre-processed into the lookup table.

 We observed in Section 2.6 that p > n sized datasets are uncommon in

 the published datasets.

Therefore, because of these reasons, p > n sizes are excluded from the analysis.

3.8. Flowchart of Horn’s Test for Sampled Data

 The algorithm for sampled data is well-represented in a flowchart format. In

sampled data, n x p are defined by X and random data draws of k are not required.

Provided X is adequately conditioned for correlation and R is invertible, this algorithm

will find the eigenvalues. Error checking the input X is not shown here; it takes place

inside the main program directing input/output and all interactions with the user. The red

dashed border signifies the code is modular in design and can be written as a function or

50

placed inside the main program. Note that while the code is complete and standalone, the

intent is for it to work in concert with pre-processed random data (refer to the flowchart

for random data in Figure 3.2 and the MATLAB script in Figure 3.3). The two

algorithms – random data and sampled data – are called consecutively and they have an

equal role in producing a comprehensive solution. While each is algebraically

independent, the interweaving of the two is required for a full assessment of how many

components to extract for PCA of the problem presented.

Figure 3.10. Flowchart diagram of MATLAB script for Horn’s test on sampled data.

The red dashed border indicates modular functionality.

51

Figure 3.11. Horn’s test algorithm in MATLAB script for sampled data.

The reader should note that Figure 3.11 contains code applicable to sample data only.

Unlike the flowchart of Figure 3.2 and code in Figure 3.3, there is no looping through

MCS draws and averaging the eigenvalues by index. Real-world data will likely need to

be conditioned – MATLAB can store and manipulate missing or

incomplete matrix entries but such data (NaN and Inf) is indigestible to the correlation

operator and toxic to the eig function. This code is compact enough to remain in the

main script – there is no dedicated function for it.

3.9. Interpolation Lookup Table

In Section 2.6 we examined the need for a suitable region-of-interest (ROI) from

which to define the sizes of data we wish to evaluate. We did this to meet practical

limitations but also to observe the stated objective of parsimonious implementation. The

%******Horn's Procedure for SAMPLED DATA in simple MATLAB script.**********

%******Does not contain plotting or error checking routines.***************

%

%initialize variables/starting conditions

%X = matrix of study data; observations in rows, variables in columns

% Must be preloaded in memory or from command "load(filename, '-.mat)"

% If you use other data storage variables, replace the 'X' in

% "R = corr(X)" with your data variable

%V = eigenvectors returned from 'eig' call. Used for component loading

% and confirmatory testing. Not needed for Horn's curve.

%D = eigenvalues of R returned from 'eig' call. Essential!

%->Note 1: Sampled data is not averaged; it is what it is

%->Note 2: X--the data matrix--must lead to invertible R for 'eig' to

% complete. Therefore, X might need to be manually conditioned

% for multicollinearity, NaN, linear dependence, etc.

R = corr(X); %Correlation matrix of sampled X
[V,D] = eig(R); %(V) eigenvectors, (D) eigenvalues

%**********************************Result*********************************

'sev' is the vector of sample data eigenvalues for all components

sev = sort(diag(D),'descend')'; %sort result D large to small
%***

%

%end of program.

52

most direct approach to a solution is to perform Horn’s procedure for every point in the

ROI; however, not only is the n x p space large, MCS of many successive iterations may

take hours to complete for just one point (p, n). We are now motivated to ask "How

much of the ROI data do we need to pre-process? Is there a way to achieve satisfactory

results without preprocessing the MEVs for every inclusive point (p, n) in the ROI?"

In turns out that with careful selection of the distance of intervals between

adjacent coordinates (p, n) we can compute (or map) a fraction of the points into a

database lookup table and then use the method of linear interpolation to instantaneously

estimate the unknown points on an as-needed basis (say from a user-supplied input).

Constructing a meshed ROI lightens the data density without negatively impacting the

accuracy of the solution. (We will see that the lookup table for a gridded ROI is still

bulky and took longer than eight days of dedicated processing time to complete.)

The lookup table has several elements that must come together: Lookup

table dimensions, granularity of the mapped (p, n) space, searching of nearest neighbors

and creation of surrogate curves, and piecewise linear interpolation of the solution from

nearest neighbors. Each of these concepts is explored in detail in the following sections.

3.9.1. Dimensions of Data Matching and Search Configurations

 Data matching refers to locating (p′, n′) in the lookup table; both, one, or neither

value may be already mapped (i.e., found in a header column for a row of pre-processed

MEVs). How the algorithm handles the search is not complex, but it is exhaustive in that

the correct subset of data from the lookup table needs to be isolated prior to interpolation.

 The matter of mapping each (p, n) in the ROI is self-defeating because we end up

53

 with an oversized database at the expense of considerable upfront CPU time – an

impractical solution. What is needed is a database of manageable size coupled with a fast

search algorithm providing accurate data to the interpolating function that in return, gives

a reliable estimation of Horn’s curve.

 To orient understanding of how the lookup table search routine categorizes a user-

selected point of interest (p′, n′), there are five cases that are possible for a given (p′, n′)

input. As shown in Table 3.1 they are:

 (1) neither p′ nor n′ are in the table;

 (2) p′ is in the table, n′ is not;

 (3) p′ is not in the table, n′ is;

 (4) p′ and n′ are both in the table; and

 (5) Either one is or both (p′, n) are out of range of the table.

Table 3.1. Point-of-interest (p′, n′) input cases and search method sections.

p' n'

Case

Number Section(s)

No direct match No direct match 1 3.10.2, 3.10.3

Direct match No direct match 2 3.10.1, 3.10.2, 3.10.3

No direct match Direct match 3 3.10.1, 3.10.2, 3.10.3

Direct match Direct match 4 3.10.1, 3.10.2, 3.10.3

Either or both out of mapped data bounds 5 N/A – Invalid

3.9.2. Lookup Table Granularity

 In Section 3.6 some examples of what happens to the slope of Horn’s curve as the

number of observations n increases for a fixed variable p were demonstrated. To

differentiate the progressive decrease in slope as n increases, a color scheme shifting

from deep blue to dark red as was chosen. Dark red indicates a Horn’s curve with slope

54

close to zero (that is, they lie close to the horizontal at λ = 1.0). Deep blue signifies the

number of observations n is approximately equal to the number of variables p.

 The takeaway from Figures 3.6 - 3.8 is after some sufficiently large value of n the

change in slope at (p, n) does not differ significantly from that of (p, n+1). Perhaps

taking n at some larger interval (n+10, for example) will save processing time, decrease

storage density, all with no loss of accurately estimating Horn's curve for (p, n).

 At this point some exploratory runs for a suitable range of granularity are in order.

There are two dimensions (p, n) in the data but three possible decisions because the

interaction of p and n need to be considered. In other words, a solution (granularity

interval) that works well in one dimension may not work well in the other and the power

of the (p, n) interaction to provide accurate Horn’s curve estimation for (p′, n′) should be

significantly high enough that misleading or inconclusive results are not presented.

Fortunately, it turns out that thoughtful selection of granularity in the two dimensions

negates concern regarding the combined interaction.

 The behavior of Horn’s curve as it rotates on λ = 1.0 about p/2 has already been

discussed, so we should expect to see it again in the exploratory runs (and we do). What

is new is how many observations each variable requires to force the slope of Horn’s

curve to near zero; apparently, there is a ratio of n/p that will give us some idea of ‘how

much n’ for ‘how much p’ we need if we have a target slope in mind. Recall that the

sampling theory behind Horn’s procedure is infinite size of n and k is needed to reach

zero slope; that is, all eigenvalues are 1.0 in the population (n being the dominant

parameter). That statement is not being tested here; the goal is be ‘good enough’ in

55

practical application for the curve estimation.

 In Figure 3.12, a total of four histograms are used to present individual views of

three values of p (5, 250, and 500) and the collective set of all p variables. The

histograms chart the frequency of movement of the first MEV as increasing observations

are put into the EigenMean algorithm and p is held stationary. The rationale behind

this analysis is the first eigenvalue is always the largest and it undergoes the greatest

change in position as the curve sweeps towards the reference line at 1.0. What the curve

shows is, for the selected size of the lookup table, increasing values of p ‘push back’ from

1.0. For instance, when p = 5 (upper left subplot in Figure 3.12), approximately 150 of

the 220 observation inputs (68%) are nearly equal to one (the large dark red bar). When

we look at p = 250, we see the minimum value reached is near 1.5 and when p = 500, the

Figure 3.12. Histogram of curve convergence towards 1.0 for various values of p. Dark

red indicates curves near  = 1.0.

56

minimum value is close to 1.6. For all variables, the mode is near 1.8. The visual

analysis from this perspective is in agreement with the individual Horn’s curve

evaluations; mean eigenvalues in the range of (1, 1.8] are reached using the maximum

available observation size of n = 7000.

 The other dimension (number of variables) is best served with a consistent step

size granularity. The number of variables sets the width of the curve; there is no

maximum p leading to some change in characteristic of the curve slope. We also know

that some number of the eigenvalues will lead to a determination of principal

components; therefore, there is more to give up in choosing too high a granularity in the

variables than by spending time mapping the MEVs for n x p random data at finer

intervals. If the interval for p is too wide, we could lose clarity on the number of

principal components because interpolation truncates the number of p components to the

lowest nearest neighbor variable found (see p
(-)

 and nnlp in Table 3.4). Therefore, it is

advantageous to trade processing time for mapping accuracy when it comes to p.

 With all things existing and planned considered – desired size of the table,

random data pre-processing time, curve convergence to λ = 1.0 as observations increase,

potential search configurations, and limiting width of the horizontal axis – it was

determined to fix granularity for p at an increment of five variables. For the

observations, the convergence nature of the curve showed some benefit that as the

observations increase, we can move from a finer granularity to a coarser one. Also, we

observed that many studies take place fairly close to the origin and along the vertical axis.

It is beneficial, without loss of resolution, to increment as shown in Table 3.2.

57

Table 3.2. Granularity intervals in the lookup table.

p n Granularity

5-1000 5-500 5

 510-1000 10

1050-2000 50

2100-7000 100

There is a balance to observe in storage size of the lookup table vs. processing

power on the (p′, n′) of interest on the fly. Earlier in this section the choice of iteration

step size was discussed for iterations in the MCS. A similar need exists in determining

how the large the grid should be in the (p, n) ROI. Recall that, based upon the published

178 data sizes surveyed during the literature review, 138 (76%) were covered in the 1 ≤ n

≤ 7,000 observations and 1 ≤ p ≤ 1,000 (respecting the constraint n = p).

Figure 3.13. Two dimensional representation of the lookup table range. A total of

26,650 rows and 1002 columns (78 megabytes of information) are in the database.

58

Based upon these factors, the bounded region is (5 ≤ p ≤ 1000) in increments of

five variables and (5 ≤ n ≤ 7000) in varying intervals of observations. The ROI is shown

in Figure 3.13; changes in color depth correspond to changing granularities. Note that

there is too much saturation to distinguish between the granularities of 5 (5 ≤ n ≤ 500)

and 10 (510 ≤ n ≤ 1000). Please refer to Figure 2.6 for a wide angle view of the mapped

area and the types and density of published studies that ‘reside’ there.

3.9.3. Lookup Table Format

Populating the lookup table (referring to it as T for convenience) with the desired

range of data on the stated granularities was a matter of running the random data

algorithm in those intervals. At completion, T had grown to 26,650 rows and 1,002

columns. The two additional columns are incorporated into T for bookkeeping; they

identify what (p, n) coordinate pair a row of MEVs belongs to. In the lookup table, the

lowest numbered rows have the highest variables – the variables p are sorted in

descending order. For the number of observations, the opposite is true: they are sorted in

ascending order. To make T column equivalent, zeros are added in the rows beyond the

number of columns filled by MEV data. The zeros are used as ‘filler’ because the

number of  entries equals the number of variables (which change throughout T.)

 A sample of this structure is given in Table 3.3. In the rows that contain p = 5 in

the first column (p) there are 0’s in columns
6 through

1000 . The pattern is similar for p

= 500; columns for
501 through

1000 have ‘0’ entries.

 Also visible in Table 3.3 is the descending order in the first column (p; high-to-

low) and ascending order arrangement in the second column (n; low-to-high). This

59

schema was adopted to put the zero cells to the right side and to the bottom of the matrix.

Therefore, T is largely sparse. Obviously there is a need to search the rows of T for the

 closest match to (p′, n′). A nearest neighbors search algorithm completes this task.

Table 3.3. Compressed sample of entries from the lookup table T. Columns extend to

1000 . Diagonal dots indicate sparse columns. Header columns are p and n.

3.9.4. Datasets Having Small Number of Variables (2 ≤ p ≤ 4)

 PCA of micro datasets does occur. For instance, Sir Ronald Fisher’s ‘Iris’ dataset

(Frank & Asuncion, 2010) consists of four variables. For p′ in the range of 2 ≤ p ≤ 4, the

HornsMethodSampledMEV.m and HornsMethodSampled2OM.m algorithms

bypass the NN searches and directly calculate the (p′, n′) eigenvalues. Because these

datasets have few variables, computed results using a direct application of Horn's

algorithm are received with little delay. Note that exploratory runs using this range of p

are not possible with the algorithms presented because HornsMethodRandomMEV.m

and HornsMethodRandom2OM.m each depend upon their respective lookup tables

and p < 5 will be rejected at the input menu. The EigenMean.m function will evaluate

p n 1 2 3 4 5 6 995 996 997 998 999 1000

1000 1005 3.906 3.901 3.863 3.829 3.801 3.774 1.28e-4 9.37e-5 6.56e-5 4.09e-5 2.16e-5 8.71e-6

1000

1000 7000 1.891 1.879 1.863 1.855 1.849 1.843 0.405 0.402 0.400 0.397 0.394 0.390

995 995 3.964 3.992 3.875 3.84 3.809 3.782 6.89e-18 0 0 0 0 0

 0 0 0 0 0

500 500 3.931 3.852 3.791 3.739 3.694 3.653 0 0 0 0 0 0

500 0 0 0 0 0 0

500 7000 1.599 1.586 1.576 1.568 1.562 1.555 0 0 0 0 0 0

 0 0 0 0 0 0

10 10 3.081 2.230 1.680 1.192 0.829 0.535 0 0 0 0 0 0

5 5 2.707 1.475 0.652 0.167 1.04e-17 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

5 7000 1.034 1.016 1.000 0.984 0.966 0 0 0 0 0 0 0 0

60

p of this size; however, it does not graph the result. The solution is a future work topic.

3.10. Nearest Neighbors Search Algorithm

Because of the intervals between lookup table entries, we use a two part

procedure called nearest neighbors (NNs) search to capture the position of (p′, n′) as it

relates to known values in T. Once the known values have been found, they are passed to

the interpolating function to be ‘read between the lines,’ thereby estimating the MEVs

defining Horn’s curve for the (p′, n′) coordinate pair. This section concentrates on the

NN search and interpolation is discussed in Section 3.11.

By nearest neighbors we are referring to the first mapped value in T greater than

and less than that of each p′ and n′. Table 3.4 lists the NN search variables and the roles

they have in the algorithm. For continuity with the MATLAB code in Appendix II, the

MATLAB variables are also provided in Table 3.4. The mechanics of the algorithm are

straightforward. The goal is to ‘sandwich’ (p′, n′) such that
() ()

'p p p
 
  and

 Table 3.4. Nearest neighbor search variables naming schema.

Variable Role

p
(-)

Lower nearest neighbor variable. In MATLAB it is

 nnlp for "nearest neighbor lower p"

p
(+)

Upper nearest neighbor variable. In MATLAB it is

nnup for "nearest neighbor upper p"

n
(-)

Lower nearest neighbor observation. In MATLAB it is

 nnln for "nearest neighbor lower n"

n
(+)

Upper nearest neighbor observation. In MATLAB it is

nnun for "nearest neighbor upper n"

Row

Identifiers

(all)

During scan of T for a nearest neighbor, row values

are returned. Adding 'r' to the upper/lower NN variable names

provides row information on where the NN variables are located.

For example, the NN search of T provides rnnlp, rnnup.

The NN search of S yields rnnln, rnnun. (Section 3.10.3)

61

() ()
.'n n n   Searching is done in two parts, first in the p column (Column 1) and then

proceeding to the n column (Column 2) of T.

3.10.1. Boundary Conditions Not Along The Diagonal

 Before beginning a search of T for p
(-)

and p
(+)

, the algorithm checks to see if p′ is

at a boundary by comparing it to the minimum and maximum values of p in the lookup

table. The minimum and maximum values of the lookup table are dynamically assigned

each time the program starts; therefore, if the boundary values of the lookup table change,

the min/max values are updated. If p is found along boundaries, the algorithm makes

assignments to the NN variables p
(-)

and p
(+)

 as given in Table 3.5. Note that this process

repeats exactly for n′ after p
(-)

and p
(+)

 have been given assignments.

Table 3.5. Boundary conditions and how to address them in nearest neighbor

assignments. ±5 and ±100 are the maximum granularities for p and n, resp.

Condition Solution

p′ = minimum p
p

(-)
 = min(p)

p
(+)

 = min(p) + 5

p′ = maximum p
p

(+)
 = max(p)

p
(-)

 = max(p) - 5

n′ = minimum n
n

(-)
 = min(n)

n
(+)

 = min(n) + 100

n′ = maximum n
n

(-)
 = max(n)

n
(+)

 = max(n) - 100

Either n
(-)

 = p
(-)

or n
(+)

 = p
(+)

n

(-)
 = n

(+)

3.10.2. Boundary Conditions Along The Diagonal

In a moment we will discuss how the algorithm searches first for
() ()

'p p p
 
 

and then
() ()' .n n n   In Section 3.7 the case was made to not process any p > n sized

data. Because all combinations of pairs for p
(-)

, p
(+)

 , n
(-)

, and n
(+)

 are needed for

62

interpolation, the algorithm must be able to detect if an NN assignment is made that

violates the constraint. In Figure 3.14, we see a notional out-of-bounds configuration.

Because (p′, n′) was somewhat near the diagonal but not over it, the NN values pulled

from T are valid at their original positions within the table but creation of new NN

coordinate pairs resulted in an invalid combination. For example, in Panel A the

coordinate (p
(-)

, n
(-)

) breaks the constraint. The solution is to use what is already known

about the NNs and reassign the coordinate as (p
(-)

, n
(+)

).

The reader might notice that we now have two pairs at the same coordinate. It

might seem that something has been lost but this is not the case. The linear interpolation

method we are using (Section 3.11) is robust in making computations for overlapping

lines and lines that cross. Part I of the interpolation method is to construct two surrogate

Figure 3.14. Case of out-of-bounds nearest neighbor find. In Panel A, (p
(-)

, n
(-)

) violates

the minimum constraint n ≥ p. Panel B shows the solution is to set n
(-)

= n
(+)

.

p(-) p’ p(+)

n(-
)

n
’

n(+
)

(A) Problem: NN Violates Constraint (B) Solution: Reassign n(-) = n(+)

p(-) p’ p(+)

n
’

 n

(-
)
=n

(+
)

p

n

(p(-),n(-))

(p(+),n(+)) (p(+),n(+))(p(-),n(+))

63

curves and use subsequent interpolation of the surrogate curves to reach the desired

solution for (p′, n′). In the example shown in Figure 3.14, the interpolation routine will

return a surrogate curve that matches the MEVs mapped for (p
(-)

, n
(-)

). Therefore, we do

not have to do anything odd or complex to find and fix the constraint violations.

3.10.3. Nearest Neighbors Not At The Boundaries

Returning to our goal of finding
() ()

'p p p
 
  and () ()'n n n   , we search in

two parts, first in the variables column and then moving to the observations column. The

mechanics of the algorithm are simple: Centering on p′, look to find p′ in T. If there is a

direct match, the algorithm records the rows where p′ is found, assigns p
(-)

 = p
(+)

 = p′

and move out of the search loop for p′. Figure 3.15 illustrates the general process.

If no direct match is found, start a loop counter at 1 and increment p′ to find p
(+)

and decrement p′ to locate p
(-)

. We set a loop limit equal to the p granularity (5, for all

cases) so that the algorithm avoids entering an infinite loop searching for a value that will

never be found (this should only happen if T is somehow corrupted). We continue to

search T iteratively above and below p′ until mapped values for p
(-)

 and p
(+)

 are assigned.

Once p
(-)

 and p
(+)

 are known, rows of T are extracted to form S, a matrix containing the

bookkeeping columns and the MEV data for p
(-)

 and p
(+)

. The reason for creating this

smaller matrix is we already have half the information needed for all coordinate pairs of

p
(-)

, p
(+)

 , n
(-)

, and n
(+)

. There is no advantage to searching for
() ()'n n n   in T.

Because of the sparsity of the lookup table, the rows of S are truncated to the number of

non-zero columns for p
(-)

. This ensures the rows S are free of the ‘filler’ data used to

support the structure of the lookup table – zeros have no practical meaning to subsequent

64

Figure 3.15. Trimming of the lookup table T to sub-matrix S, and finally a matrix of only

nearest neighbors data, matrix Y. Only numeric entries comprise actual T, S, and Y.

calculations. Column truncation of S yields MEVs that extend only to ()p
C  . However,

in Sections 2.2.4 and 3.9.2 we learned the first p/2 components is where Horn’s curve

provides an estimate of random noise in the sample. Therefore, truncation near the last

component (and well below 1.0 ) is inconsequential to our test.

T

S

Y

p 1 n 10 1.270725 1.221929 1.186979 1.155608 1.12966 1.101491 1.076144 1.050387 1.027607 1.003946 0.981904 0.960629 0.93759 0.915781 0.892579 0.870993 0.845777 0.820365 0.793967 0.768929

p 1 n 9 1.266149 1.21996 1.183721 1.153124 1.123831 1.097829 1.073742 1.050781 1.029623 1.005339 0.983886 0.961091 0.939228 0.917273 0.895526 0.871741 0.848106 0.82123 0.794311 0.76963

p 1 n 8 1.261288 1.217463 1.181236 1.151392 1.12322 1.097954 1.072017 1.050137 1.029922 1.005494 0.984706 0.962456 0.938777 0.918089 0.895701 0.873146 0.848895 0.826185 0.797971 0.772201

p 1 n 7 1.26274 1.215605 1.179682 1.150078 1.120584 1.095292 1.072599 1.049705 1.02599 1.004911 0.984384 0.962052 0.941478 0.918208 0.898438 0.87609 0.849971 0.825802 0.800367 0.772797

p 1 n 6 1.258341 1.214876 1.181019 1.150341 1.123711 1.097557 1.073636 1.050329 1.028013 1.006241 0.983679 0.963278 0.941286 0.918858 0.895989 0.874852 0.851412 0.823017 0.79893 0.772403

p 1 n 5 1.256962 1.21065 1.179227 1.148427 1.122542 1.095546 1.070963 1.046357 1.025593 1.004555 0.98336 0.962372 0.94184 0.919198 0.898344 0.878262 0.854921 0.829741 0.802068 0.774894

p 1 n 4 1.260213 1.214586 1.178262 1.15012 1.123779 1.096824 1.073761 1.049293 1.026663 1.004166 0.982585 0.961538 0.939432 0.918318 0.898851 0.876579 0.852876 0.828662 0.800078 0.774401

p 1 n 3 1.256324 1.210624 1.178032 1.147049 1.122104 1.094264 1.072111 1.048972 1.026606 1.005685 0.983544 0.960454 0.939946 0.919588 0.898554 0.877865 0.853868 0.829793 0.803862 0.779095

p 1 n 2 1.248327 1.206958 1.174089 1.143845 1.114824 1.090292 1.069709 1.048435 1.026638 1.003513 0.984047 0.962926 0.942645 0.922917 0.902613 0.881252 0.858367 0.834254 0.809073 0.778124

p 1 n 1 1.247674 1.20321 1.168306 1.142011 1.114678 1.08994 1.06724 1.046456 1.025832 1.003746 0.983708 0.964793 0.943287 0.923779 0.904078 0.884286 0.860172 0.838214 0.810589 0.777561

n 10 1.236877 1.197912 1.164644 1.137637 1.111883 1.086613 1.06587 1.045004 1.02606 1.005333 0.985127 0.965494 0.945342 0.925984 0.820365 0 0 0 0 0

n 9 1.231213 1.192365 1.164386 1.136046 1.110778 1.087912 1.065877 1.044627 1.024374 1.006462 0.986853 0.966142 0.945143 0.928449 0.82123 0 0 0 0 0

n 8 1.231293 1.190595 1.155416 1.132952 1.108954 1.084274 1.06444 1.044056 1.025037 1.006302 0.985791 0.965545 0.947183 0.928816 0.826185 0 0 0 0 0

n 7 1.221791 1.186252 1.154838 1.128343 1.107656 1.084107 1.063433 1.043702 1.024636 1.004611 0.986213 0.967112 0.947956 0.929836 0.825802 0 0 0 0 0

n 6 1.218422 1.180781 1.149661 1.125311 1.103071 1.083675 1.063282 1.043616 1.024944 1.005936 0.985946 0.969121 0.952684 0.932485 0.823017 0 0 0 0 0

n 5 1.215257 1.177583 1.150922 1.12541 1.101544 1.082208 1.060242 1.040881 1.022768 1.003882 0.985098 0.969041 0.950311 0.934273 0.829741 0 0 0 0 0

n 4 1.211601 1.172784 1.147016 1.123265 1.101104 1.080066 1.059837 1.040312 1.022821 1.003903 0.986352 0.968638 0.952548 0.934549 0.828662 0 0 0 0 0

n 3 1.208506 1.173251 1.14657 1.12011 1.097008 1.076616 1.059078 1.040479 1.022166 1.005041 0.98693 0.969324 0.950403 0.934829 0.829793 0 0 0 0 0

n 2 1.202613 1.170642 1.144196 1.119456 1.098326 1.078632 1.05886 1.040201 1.022783 1.005924 0.988232 0.971604 0.954247 0.937017 0.834254 0 0 0 0 0

n 1 1.203711 1.168969 1.138963 1.115901 1.094788 1.076558 1.057476 1.039716 1.020971 1.003818 0.986735 0.970595 0.953833 0.937078 0.838214 0 0 0 0 0

n 10 1.19672 1.164276 1.139587 1.116922 1.094611 1.075016 1.057107 1.039006 1.022168 0.938777 0 0 0 0 0 0 0 0 0 0

n 9 1.197223 1.160762 1.136169 1.114326 1.093977 1.074296 1.056546 1.039558 1.021803 0.941478 0 0 0 0 0 0 0 0 0 0

n 8 1.188219 1.156303 1.132106 1.112148 1.092279 1.072538 1.054373 1.036437 1.01977 0.941286 0 0 0 0 0 0 0 0 0 0

n 7 1.189424 1.155723 1.132198 1.111219 1.09069 1.073731 1.055666 1.038698 1.021435 0.94184 0 0 0 0 0 0 0 0 0 0

n 6 1.185515 1.151777 1.129429 1.105574 1.088374 1.071153 1.054559 1.037718 1.021506 0.939432 0 0 0 0 0 0 0 0 0 0

n 5 1.185683 1.152658 1.130013 1.108417 1.088381 1.071621 1.055254 1.037752 1.020824 0.939946 0 0 0 0 0 0 0 0 0 0

n 4 1.183844 1.150954 1.127564 1.104666 1.086434 1.067491 1.052111 1.036702 1.021301 0.942645 0 0 0 0 0 0 0 0 0 0

n 3 1.182793 1.149613 1.125598 1.104048 1.085542 1.067455 1.051349 1.035372 1.020062 0.943287 0 0 0 0 0 0 0 0 0 0

n 2 1.171049 1.141583 1.11899 1.100853 1.084602 1.066757 1.050357 1.035092 1.018503 0.945342 0 0 0 0 0 0 0 0 0 0

n 1 1.172387 1.138505 1.117334 1.098759 1.080909 1.063281 1.048377 1.033337 1.019229 0.945143 0 0 0 0 0 0 0 0 0 0

p 4 n 10 1.168528 1.139 1.117489 1.097846 1.08046 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 9 1.163313 1.135217 1.113823 1.095746 1.077544 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 8 1.160532 1.135323 1.112964 1.094409 1.076689 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 7 1.1567 1.130066 1.110143 1.092959 1.075698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 6 1.15281 1.12969 1.108204 1.090575 1.073887 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 5 1.149889 1.124388 1.105535 1.08723 1.07343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 4 1.148632 1.122928 1.103655 1.087155 1.071574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 3 1.147007 1.12269 1.101973 1.084502 1.070406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 2 1.142664 1.118933 1.099034 1.083508 1.068929 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 1 1.141273 1.11565 1.099315 1.082549 1.06669 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p '

p
(-)

p
(+)

n 10 1.236877 1.197912 1.164644 1.137637 1.111883 1.086613 1.06587 1.045004 1.02606 1.005333

n 9 1.231213 1.192365 1.164386 1.136046 1.110778 1.087912 1.065877 1.044627 1.024374 1.006462

n 8 1.231293 1.190595 1.155416 1.132952 1.108954 1.084274 1.06444 1.044056 1.025037 1.006302

n 7 1.221791 1.186252 1.154838 1.128343 1.107656 1.084107 1.063433 1.043702 1.024636 1.004611

n 6 1.218422 1.180781 1.149661 1.125311 1.103071 1.083675 1.063282 1.043616 1.024944 1.005936

n 5 1.215257 1.177583 1.150922 1.12541 1.101544 1.082208 1.060242 1.040881 1.022768 1.003882

n 4 1.211601 1.172784 1.147016 1.123265 1.101104 1.080066 1.059837 1.040312 1.022821 1.003903

n 3 1.208506 1.173251 1.14657 1.12011 1.097008 1.076616 1.059078 1.040479 1.022166 1.005041

n 2 1.202613 1.170642 1.144196 1.119456 1.098326 1.078632 1.05886 1.040201 1.022783 1.005924

n 1 1.203711 1.168969 1.138963 1.115901 1.094788 1.076558 1.057476 1.039716 1.020971 1.003818

n 10 1.19672 1.164276 1.139587 1.116922 1.094611 1.075016 1.057107 1.039006 1.022168 0.938777

n 9 1.197223 1.160762 1.136169 1.114326 1.093977 1.074296 1.056546 1.039558 1.021803 0.941478

n 8 1.188219 1.156303 1.132106 1.112148 1.092279 1.072538 1.054373 1.036437 1.01977 0.941286

n 7 1.189424 1.155723 1.132198 1.111219 1.09069 1.073731 1.055666 1.038698 1.021435 0.94184

n 6 1.185515 1.151777 1.129429 1.105574 1.088374 1.071153 1.054559 1.037718 1.021506 0.939432

n 5 1.185683 1.152658 1.130013 1.108417 1.088381 1.071621 1.055254 1.037752 1.020824 0.939946

n 4 1.183844 1.150954 1.127564 1.104666 1.086434 1.067491 1.052111 1.036702 1.021301 0.942645

n 3 1.182793 1.149613 1.125598 1.104048 1.085542 1.067455 1.051349 1.035372 1.020062 0.943287

n 2 1.171049 1.141583 1.11899 1.100853 1.084602 1.066757 1.050357 1.035092 1.018503 0.945342

n 1 1.172387 1.138505 1.117334 1.098759 1.080909 1.063281 1.048377 1.033337 1.019229 0.945143

p
(+)

n '

p '

p
(-)

n '

Matrix Col 1 Col 2

Col 2

(p
(+)

, n
(-)

) 1.221791 1.186252 1.154838 1.128343 1.107656 1.084107 1.063433 1.043702 1.024636 1.004611

(p
(+)

, n
(+)

) 1.218422 1.180781 1.149661 1.125311 1.103071 1.083675 1.063282 1.043616 1.024944 1.005936

(p
(-)

, n
(-)

) 1.189424 1.155723 1.132198 1.111219 1.09069 1.073731 1.055666 1.038698 1.021435 0.94184

(p
(-)

, n
(+)

) 1.185515 1.151777 1.129429 1.105574 1.088374 1.071153 1.054559 1.037718 1.021506 0.939432

 (p ', n ')

p
(+)

p
(-)

65

 For the input parameter n′, the process is similar for that of finding p′ in that

Column 2 of S is searched up and down from n′ until n
(-)

 and n
(+)

 are located. If n′ is a

direct match to a value for n, then n
(-)

 = n
(+)

 = n′. The search step size increment is 1 but

because of the larger granularity in n the search extends ±100 units away from n′.

At the conclusion of the search for n
(-)

 and n
(+)

, we can reduce S to four rows. Each row

defines a coordinate pair: (p
(+)

, n
(-)

) , (p
(+)

, n
(+)

), (p
(-)

, n
(-)

), and (p
(-)

, n
(+)

). These four rows

are stored in a new matrix, Y.

 Returning our attention to Figure 3.15, the first column of T is searched for p
(-)

and p
(+)

 and when found, the rows are identified (blue and gold, respectively) and

removed from T to form S. Next, the second column of S is searched for the rows

containing n
(-)

 and n
(+)

 (green and white rows, respectively) and when located, are

removed to form Y. The blending of colors in Y indicates the combination searches

provides the needed information to carry Y forward for interpolation.

3.11. Interpolation–Looking Between the Points

Interpolation is the estimation of an unknown intermediate data value by fitting a

function through known data values. Given the familiar form ()y f x , the process

works backwards to find an unknown function f that represents the known dependent y

values from the known independent x values. There are many types of interpolation; the

one we are specifically interested in is piecewise linear interpolation; piecewise because

we are seeking intermediate values at multiple discrete points along a path and linear

because we are not fitting any curvature components between those points. The

technique is akin to ‘connecting the dots’ which is suitable in this case, as we have

66

already visualized Horn’s curve passes originates at  1 1,C  and passes through  2 2,C 

and so on until terminating at  ,p pC  . The reader should recognize that averaging the

distance between the points is not an acceptable method because the relationship of (p′,

n′) to the nearest neighbors is not necessarily along the midpoint of the data points stored

in Y. The expression for the piecewise linear interpolation function is given by

Quateroni & Saleri (2003)

  1

1

() ()
() () for i i

i i i

i i

f x f x
f x f x x x x I

x x






   


 (3.11)

where ()f x is a function denoted by the interval iI as 1[,]i ix x  having a set of nodes

0 1 1p px x x x    . We can consider the nodes as the number of components in our

model, each represented by an eigenvalue. The eigenvalues have been sorted, so the

inequality requirement holds. We note that this expression meets our need of proximity

for the interpolated solution to (p′, n′) because the quotient weighs the result by

differences in both the dependent and independent values between adjacent points.

Lastly, the intervals in our problem are finite and closed on adjacent points.

 MATLAB has several interpolation functions in its library and the one of interest

to the problem at hand is interp1, a linear piecewise function of the form

yi = interp1(x,Y,xi)

where yi is the unknown ordinate at abscissa x and Y are the values of the underlying

function at the points of the vector or array of xi. Our query is not structured this way;

thus far we have treated iC as the abscissa and
i as the ordinate.

67

 Instead, we are interested in a scree line which is defined by the coordinate pair

  , {1,2,..., 1, }i iC i p p    but are providing a (p′, n′) pair which may or may not be in

the lookup table. Although (p, n) is used as input to Horn’s algorithm during the random

data preprocessing step, determining the (p′, n′) pair from a scree line is not so clear: We

are interpolating one value on the vertical axis for two points along the horizontal axis

and interp1expects a unique x for every ()f x . A multistep approach, one where an

intermediate calculation provides a path to a final solution, is required. Therefore, if we

can format the input we send to interp1, the function will provide the intended result.

3.11.1. Surrogate Curves

 In Figure 3.16 there are two places on the graph where the intermediate solution is

needed. The first is at the coordinates above (p′, n′) given by (p
(+)

, n
(-)

) and (p
(+)

, n
(+)

).

The second set of coordinates is below (p′, n′) at (p
(-)

, n
(-)

) and (p
(-)

, n
(+)

). The multi-

dimensional interpolation is done this way to maintain order in the nearest neighbor

matches. Otherwise, if only one curve is interpolated from all the nearest neighbors, we

will have inconsistent results from mixed coordinates. Interpolating two surrogate curves

evu and evl to find the third and final curve maintains the data pedigree.

evu(i) = interp1([nnln;nnun],[mevnnln(i); mevnnun(i)],n)

evl(i) = interp1([nnln;nnun],[mevnnln(i); mevnnun(i)],n)

Here, ev is the unknown eigenvalue along the (u)pper or (l)ower surrogate curves at

component index i; nnln and nnun are the lower and upper NNs for observations;

and mevnnln and mevnnun are the mean eigenvalues for nnln and nnun at index

i, respectively. (In Appendix II the mevnnln and mevnnun are given in terms of rows

68

of Y. These names are used here for simplicity in discussion.) For reference to the

nearest neighbor naming schema, please refer to Table 3.4.

 Lastly, n is n′, the unknown we wish to find. MATLAB will perform index

operations of vectors without counters; however, we have a special case of a single point

on the curve due to multiple responses for one predictor. Iteration takes place for all Ci,

i = 1 to p
(-)

.

3.11.2. Interpolation of Horn's Curve

 When we have both surrogate curves, we can next interpolate the overall solution

using evu and evl as inputs into getev as

getev(i) = interp1([nnup;nnlp],[evu(i); evl(i)],p)

Here, getev(i) are the MEVs for (p′, n′) for each component Ci (still observing i = 1

to p
(-)

); nnup and nnlp are the lower and upper NNs for variables (Table 3.4); and p is

p′, the unknown part of our point-of-interest (p′, n′). We similarly have to iterate across

each point in evu and evl but when finished have arrived at the desired solution: a

completed Horn’s curve for the user-supplied (p′, n′) input.

 It is helpful to demonstrate an example of how the interpolation sequence occurs.

Returning to Figure 3.16, we see a visual representation of fictitious data from Y in the

form of four plotted upper and lower NN curves. The two dark blue lines represent upper

NN pairs (p
(+)

, n
(-)

) and (p
(+)

, n
(+)

) and the gold lines fix lower NN pairs (p
(-)

, n
(-)

), and

(p
(-)

, n
(+)

). Round markers signify the corresponding MEVs for each component C1 - C5

with respect to the NN curves. Brackets indicate the range of the anticipated Horn’s

curve solution for (p′, n′). No interpolation has yet occurred.

69

Figure 3.16. Pictorial representation of the upper and lower nearest neighbors curves.

Mean eigenvalue data (not shown) are along the vertical axis. Components (Ci) are

along the horizontal axis.

Figure 3.17. Interpolation of the upper surrogate curve at (p
(+)

, n′) and the lower

surrogate curve at (p
(-)

, n′). Features created during this step are shown in red.

(p’, n’)

(p(-), n(-))

(p(-), n(+))

C1 C2 C3 C4 C5 …

(p(+), n(+))

(p(+), n(-))

(p’, n’)

(p(-), n(-))

(p(-), n(+))

C1 C2 C3 C4 C5 …

(p(+), n(+))

(p(+), n(-))

(p(+), n′)

(p(-), n′)

70

In Figure 3.17, the upper and lower surrogate curves defining evu and evl have been

found by using two pairs of known curves (the upper and lower NNs from Y) for

interpolation of each unknown curve at the coordinate (p
(+)

, n′) and at (p
(-)

, n′). Features

that have changed or been added to on the chart are indicated by red text boxes, lines, and

markers. We have located n′ from determining () ()'n n n   .

The process is repeated in Figure 3.18, this time evaluating the two surrogate

curves for the unknown Horn’s curve. The interpolation routine getev has found p′ by

determining its relationship as
() ()

'p p p
 
  . We now know each

i for each component

Ci, thereby defining the estimate of Horn’s curve for (p′, n′) and can provide the graph for

visual analysis. Figures 3.19 - 3.22 show full results rendered in MATLAB.

 Figure 3.18. A finished, interpolated solution of the estimated Horn’s curve for

(p′, n′). The solution is shown in solid red; the surrogate curves are in view to orient the

interpolation. Each (,)i iC  is representative of a point along the curve. All
i shown are

progeny of the surrogate curves from Y and the nearest neighbors extracted from T.

(p’, n’)

C1 C2 C3 C4 C5 …

(p(-), n′)

(p(-), n′)

 1 1,C

 5 5,C

 2 2,C

 3 3,C  4 4,C

71

Figure 3.19. A very small dataset. The upper NN curves (blue) cross at p = 5 yet the

surrogate curve stays well-banded. This indicates the interpolation routine is robust with

regard to which line is above or below the other. The figure legend describes in detail

the coordinate pair of each curve drawn.

Figure 3.20. A small dataset. Notice the close approximation among the curves.

72

Figure 3.21. A medium dataset. All the curves have converged around the Horn’s

algorithm solution for random data (solid red line). This graphic uses the same size of

data Horn presented in his 1965 paper.

Figure 3.22. A large dataset. There is much less to see in differences between mapped

and interpolated in dimensions of this size.

73

Note that the figures show the upper and lower curves, both from mapped data

and interpolated surrogate points. The solid red line running through the middle of the

figures represents the interpolated solution and is a direct computation of (p′, n′) using

EigenMean (Figure 3.3). Notice that some of the upper/lower nearest neighbor curves

cross (Figure 3.19 near p
(-)

 = 5). The observation that this does not affect the accuracy of

the interpolating function is reassuring. Exploratory results are in agreement with

expectations from earlier visual analysis. Note that in this section all interpolation was

carried out on random data – no sampled data were used in the analysis.

3.12. Linear Regression Second-Order Model

The primary motivation behind developing a linear regression second-order

model (2OM) is to save space. Earlier we learned that the lookup table is sparse – it is

full of zeros because the rows only contain data equal to two plus the value of the

variable p. If the data already collected (the lookup table) is used to fit a quadratic

polynomial for each (p, n) row, then the size of the lookup table can be greatly reduced.

3.12.1. Suitability of A Second-Order Model

The reader might question "Why a second-order model – why not fit a higher-

order polynomial?" The answer is in the shape of Horn’s curve: its simple characteristics

– a slightly bowed line without inflection points – does not require a complex

polynomial. Simplicity and parsimony in the model is desired. Three coefficients

provides a suitable representation of the curve. More coefficients add data back into the

lookup table and does not provide a more accurate solution.

74

3.12.2. Least-Squares Estimation of Regression Coefficients

 The method of least-squares seeks to fit a line through regressor data points X by

minimizing the differences between the observed responses at y and a model predicted

response of ŷ (in this case, ˆ ˆλ y). In matrix notation, the model is

 y = Xβ+ε (3.12)

where β are the regressor coefficients, ε is the error term (y and X are already defined).

1 11 12 1

0

2 21 22 2

1

11

1 2

1

1
, , ,

1p p p p

y x x

y x x

y x x










     
      
         
      
       

          

y X β ε (3.13)

 The form of quadratic model that fits the problem at hand, interpolating an

estimated Horn's curve for (p′, n′), is given by

 2

0 1 11
ˆ ˆ ˆ ˆ    λ C C (3.14)

where λ̂ is a vector of estimated mean eigenvalues and C is a vector of components

numbered from 1 to p. For amplifying information regarding the derivation of Equations

(3.12) - (3.14), please see the text by Montgomery, Peck, and Vining (2006) or similar

source on linear regression techniques.

 The MATLAB built-in function library provides a function called polyfit that

evaluates vector C to return a vector of least-squares estimated coefficients β̂ at the

specified order of the polynomial (2 for a quadratic). Readers may be interested to learn

that instead of formatting coefficients in ascending power order, polyfit outputs

coefficients in a descending power format (β11, β1, β0) (Recktenwald, 2000).

75

 We use polyfit to evaluate each row of MEVs, thereby reducing the lookup

table to only five columns (two for bookkeeping of the coordinate pair and three for the

polynomial constant β0, linear β1 coefficient, and quadratic β2 coefficient). The reduction

in file size is significant, from almost 80 megabytes of MEV data to just 606 kilobytes of

2OM data. A snapshot of the table is given below. For reference, compare to the original

lookup table in Table 3.3.

Table 3.6. Sample of the coefficients lookup table. Total width is five columns–two for

coordinate pair bookkeeping and three for coefficients entries.

To display the data, MATLAB’s function polyval uses the β̂ coefficients from

a row in the coefficients lookup table to estimate λ̂ for a particular (p, n) and returns an

array we can easily plot. Producing Horn’s curve is a simple matter of rendering the

(C, λ̂) coordinates in a figure. We shall see that the 2OM curve is not truncated at p
(-)

during interpolation as it is for the MEV approach.

3.12.3. Sufficient k for Linear Regression

In building the 2OM, the anticipated approach is to use least-squares estimation to

find the model coefficients. We need to ‘trust’ that the lookup table data will adequately

p n 11̂
1̂ 0̂

1000 1005 4.5335e-6 -0.0078 3.3774

1000
1000 7000 6.3377e-7 -0.0019 1.7546

500 500 1.8203e-5 -0.0156 3.3876

500
500 7000 1.2644e-6 -0.0025 1.5139

5 5 0.1763 -1.7302 4.2507

5
5 7000 4.9733e-5 -0.0170 1.0504

76

define the regressed line. Therefore, due diligence is required to verify the lookup table

entries can be used as a starting point for the model. Note that this is a progress check to

verify data is properly conditioned; it is not an exercise to reevaluate if changing the

iterations of k in the MCS will give different results. (From the discussion in Section 3.4

we already know k affects the smoothness of the data.)

 In this small scale experiment, the MCS are re-accomplished for varying k in

powers of 10 from 0 to 3 (10, 100, 1,000, and 10,000). At the end of each k runs, the

indexed eigenvalues are averaged, stored, and the process repeated until k completes the

last of the 10,000 iterations. This is done for only one example problem, that of 297x65

(which is, if one refers to Figure 3.4, Horn’s sample size from his 1965 paper). Our

interest is with how well k = 100 ‘behaves’ because it is the size of the MCS iteration

Figure 3.23. Subplots of Horn’s curves produced from various k iterations of Monte

Carlo simulations. Lines of red circles are MEVs, green lines are the 2OM fitted curves.

77

parameter k from which our existing data is constructed. In Figure 3.23 we see the results

of the experiment. The overlapped green line on top of the red o’s marks each eigenvalue

along Horn’s curve and compares the lines for any trends with respect to k. As viewed in

the upper right subplot, k = 100 offers a satisfactory fit to the example dataset and while

there are some small variations between the 2OM and MEV lines, there is no trend

present that would be cause for alarm.

We also observe that k = 10,000 is the best fit in that the two lines follow the exact same

path (this observation should be expected for such a high value of k.)

 However, the difference between the two solutions is slight and does not merit a

hundredfold increase in computation time. Based on these exploratory runs, k = 100

remains a suitable selection for purposes of linear regression least-squares second-order

model fitting.

3.12.4. Model Adequacy

 A standard and necessary procedure for linear regression model fitting is checking

for basic assumptions (Montgomery, Peck, & Vining, 2006:122). They include:

 - A linear relationship exists between the response and predictor;

 - The error term ε has zero mean;

 - The error term ε has constant variance σ
2
;

 - The errors are uncorrelated; and

 - The errors are normally distributed.

In the case of the 2OM, the response ̂ is a linearly independent (orthogonal) product of

random variables sampled from the known ~ (0,)pNID I population distribution defined

78

for the MCS. At no point is noisy, real-world data introduced into the MEV stream;

therefore, the model adequacy assumptions are satisfied.

3.12.5. Nearest Neighbor Interpolation for the 2OM

 The lookup table has been reduced to five columns but still needs to be searched

during a (p′, n′) query for nnlp, nnup, nnln, and nnun. The methodology discussed

earlier for searching and sorting NNs (Section 3.10) and interpolating (Section 3.11) has

not changed; the only difference is fewer columns of data need to be organized (each row

in the coefficients lookup table is five columns wide). New methodology employed.

3.12.6. Random Data Graphs Comparisons

There is motivation to compare visually the 2OM graphs to those produced by the

original lookup table. Of concern are "Was any accuracy lost for the reduction of lookup

table size?" and "Does the curve fitting and least-squares introduce variation to the

method?" The parsimony in the 2OM is not worth risking the accuracy already available

to us in the MEV. Fortunately, the answer to both questions is "No."

 Visual analysis of side-by-side comparisons of the graphics indicates performance

is similar for each strategy. In Figures 3.24 - 3.26, the 2OM figures are in Panel A and

the MEV ones are in Panel B. The largest difference appears along the horizontal axis.

Because the 2OM can evaluate each curve at a number of points equal to p′, the

horizontal axis in the 2OM figures extend to p′ and is not truncated at ()p
C  (as it is for

MEVs during the NN search). Additionally, the 2OM curves appear to be smoother. In

comparison, the MEVs are plotted in a ‘connect-the-dots’ fashion with no algebraic

computation of intermediate values.

79

Figure 3.24. Visual comparison of results for a very small dataset (11,16).

Figure 3.25. Visual comparison of results for moderate data size (65, 297).

Figure 3.26. Visual comparison of results for larger data size (800, 3266).

80

In each strategy the known solution (‘the truth curve’; an application of Horn’s

algorithm EigenMean from Figure 3.3 for direct computation of the MEVs describing

the coordinate pair) is calculated and overlaid into each figure as a heavy, solid red line.

In nearly every instance, the interpolated (p′, n′) Horn’s curve is indistinguishable.

The visual agreement between solution strategies and within the interpolation

routine indicates valid results are being produced. Therefore, the methodology developed

thus far is capable of producing final results and we are ready to see how the final

solution for estimation Horn's curve comes together in Chapter IV.

3.13. Methodology Summary

In this chapter, a technical examination of Horn’s paper was conducted first to

understand the method and then to build an algorithm capable of displaying Horn’s curve.

The individual elements of the algorithm are:

- Monte Carlo simulation generation of random data;

- Creating correlation matrix of the random data;

- Eigendecomposition of the correlation matrix;

- Indexing, averaging, and storing the MEVs in the lookup table;

- Searching the lookup table for nearest neighbors p
(+)

, p
(-)

, n
(+)

, n
(-)

 points

according to one of four cases, depending upon the location of (p′, n′) in the

lookup table;

- Interpolation of nearest neighbors to produce surrogate data before in-turn

interpolating the surrogate data for estimated MEVs; and

- Plotting of the estimated MEVs to create Horn’s curve for (p′, n′).

81

Once the MEV-based algorithm was complete, various sized (p′, n′) pairs were selected

and used to query the lookup table. The interpolated curves were overlaid with a direct

computation of Horn’s curve of (p′, n′).

 After MEV algorithm functional integrity was verified, the next step consisted of

refining the lookup table data into a table of linear regression second-order coefficients.

The second-order model algorithm permitted an 80-fold reduction in lookup table size

with no loss of graphical accuracy in the completed Horn’s curves. Visual analysis

verified both algorithms perform as intended and have comparable results to each

 other. Our original goal is to complete Horn’s test for an estimate of dimensionality for

an n x p sampled dataset within range of the lookup table. In Chapter IV we will test the

algorithms using sampled data from real-world experiments and produce the research

objective of this thesis: An accurate stopping rule to produce a determination of

multivariate data dimensionality using an estimate of Horn’s curve.

82

IV. Results and Analysis

4.1. Chapter Overview

This chapter extends the exploratory analysis work done earlier to solving real-

world problems. The objective is practical application; to make a contribution to

practitioners wishing to solve principal components-type problems. To summarize our

problem statement: Integral to successful PCA is determining when to stop extracting

components – the matter is not a trivial one. Our solution – the goal – is to make Horn’s

test easier to use, meaning "with minimal time and effort." The large amount of random

data needed has been preprocessed into manageable, nearly instantaneously available

form, and algorithms have been written to produce an answer. The final link to a useful

solution is bringing the theory to the application and synthesizing them.

4.2. Sampled Data Source

 Thus far we have experimented with random data of known size. We surveyed

the literature review to see where and how large typical studies might be but the actual

what from a published database has not been used until now. Revisiting the UCI

website, eleven datasets were selected as ‘test subjects.’ The reasons for selecting these

particular ones are many: The type of data they contain (regression or classification), how

much conditioning of the data was needed (non-numeric characters, missing values, NaN,

Inf, non-invertible are all no-gos), a representative sample for the lookup table (right-

sized n x p). As much as possible of the original data was kept; editing and conditioning

was kept out to a minimum. Even so, the findings and evaluations given here may differ

from other studies accomplished with the same data. Table 5.1 lists the datasets.

83

4.3. Putting It All Together

We have sufficient and necessary components to marry the theory with

application. In Chapter III two flowcharts were used to describe how the two solution

strategies function individually – Figure 3.2 for random data and Figure 3.10 for sampled

data. Accompanying MATLAB scripts, one per each flowchart, details a body of

functional code (Figure 3.3 and Figure 3.11, respectively). However, the two parts are

not much use individually; the conjunction is required to produce the solution for an

accurate estimation of how many components to extract for PCA.

4.4. Running of the Main MATLAB Script for The Mean Eigenvalues Approach

 Before proceeding to the visual results of Horn’s curve, we first complete a

progress check to verify functionality among the search, interpolation, and curve

producing subroutines. The main program script is called HornsCurveSampled.m.

and there are variants for each the MEV and 2OM. The only difference is how the

different dimensions of the two lookup tables are handled.

 When this program is run, we are given a choice of multivariate studies in the

directory and also presented an option to load one under another name. In our example

case, we choose option '1' for the Forest Fires dataset. The main program loads the

lookup table, determines the size of the lookup table, retrieves the user-requested file,

loads the data matrix, and then sweeps the data for size requirements (has to be within

range of T) and ensures it is not underdetermined (p > n). If a problem is found, the user

is notified what the problem is and given a chance to either reload another file or quit.

See Figure 4.1 for an image of the user input screen/menu.

84

Figure 4.1. Main program user interface.

Once the data preliminaries check out, the algorithm assigns the number of rows

of the matrix to n′ and the number of columns to p′. Control is then passed to the

function findcurves.m which is the search algorithm used to find the nearest

neighbors pairs in the lookup table, interpolate the surrogate curves, and calculate the

estimated Horn’s curve. The interpolated curve is passed back and

HornsCurveSampled.m again has control over program flow. Next, the dataset

 This script will estimate Horn's Curve to aid in making a
Principal Components Analysis (PCA) dimensionality deter-
mination for an actual--sampled--data set. Horn's Curve
is found by interpolating known, "ideal" data of size
equivalent to the actual sample size. Constraints regarding
input and what the script can do are listed below.
The input values must be within these ranges:

 # of variables (p) --> {5,1000}
 # of observations (n) --> {5,7000}

A crucial condition to consider is underdetermined data; that is,
data having fewer observations n than features p. PCA of
underdetermined data is possible; however, this script does not
accept such datasets.

Please choose a dataset to load. Type the number and press
'Enter.' If the dataset is not listed, choose '0' (zero) and type
in the filename.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(1)  Forest Fires                                             
(2)  Glass                                                    
(3)  Parkinsons                                               
(4)  SECOM                                                    
(5)  Seeds                                                    
(6)  Semeion                                                  
(7)  Steel Plates                                             
(8)  Wisconsin Breast Cancer Study                            
(9)  Wines (Set 1)                                            
(10) Wines (Set 2)                                            
......................................................... 
(0)  Manually enter a filename                                
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-> Please make a selection (1-10) or (0):

85

undergoes correlation, eigendecomposition, and sorting of the eigenvalues (Figures 3.10

and 3.11; recall that there is no averaging of sampled data eigenvalues).

At this point, the merging of the real-world data (the user specified file) and

idealized data (the interpolated solution) occurs and Horn’s test takes place. Points along

the sampled curve and the estimate of Horn’s curve are checked component by

component. These are the cases that may be encountered and the outcomes:

- If the sampled data (plotted in the scree line) is larger than Horn’s curve at a

component, then that component is considered significant and it should be

extracted for analysis.

- If the scree line falls below Horn’s curve, then those components are

considered insignificant and may be discarded.

- If a component is below Horn’s curve but above Kaiser’s criterion at λ = 1.0,

then it is considered contested. Contested points should be further evaluated

by the analyst for significance to the study at hand.

 At this time we can get information about how much variance the components in

each of these cases is representing. This is vital for PCA since the summarization of

variance per component and the cumulative amount of variance the dimensionality

estimate retains is of value to the practitioner. The variance information will not be

shown on the graph because it is too unwieldy; rather, it will be displayed in the

MATLAB Command Window and stored in vector format (located in the variable

Workspace) should the analyst want it.

86

4.4.1. Figure Output and Visual Analysis

The two components are stitched together to produce one figure displaying the

estimate of Horn’s curve and the results of Horn’s test. A quick visual shows what the

individual pieces looked like and how they come together in the solution.

Figure 4.2. Conjunction of sampled and random data components in the finished product

using the interpolated mean eigenvalue (MEV) solution of Horn’s test.

87

In Figure 4.2, we see the solution (large center graphic) is a composite of the

sampled data (upper left) and random data (upper right) halves. The solution includes not

only an estimation of Horn’s curve, it also features two common visual elements of PCA

– Kaiser’s criterion and the scree line.

Figure 4.3. Detailed description of the interpolated solution of Horn’s test.

Figure 4.3 provides a detailed explanation of each feature in the graphic and how

to interpret them. The legend box contains a count of the components in each category.

In this example, there are four components that are likely candidates for extraction (green

points), eight that could be discarded due to low explanation of total variance (grey

points), and one component that is contested (red point).

Scree Line
Sampled Data; Eigenvalues

(Dots Along The Scree Line)
Are Relative Size of

Components

Horn’s Curve
Random Data; Mean

Eigenvalues Interpolated from
The Lookup Table. Length

Truncated by Nearest Neighbor
Lower Variable for MEV soln.

Red Point = Contested
Horn’s Test → Discard

K1 → Extract
(1 ea)

Gray Points =
Not Significant→ Discard

(8 ea)

Green Points =
Significant→ Extract

(4 ea)

Kaiser’s Criterion

In Each
Component

Category

MEV is the solution strategy used to build this chart, “ForestFires” is the dataset name, (517x13) is the data size

Components;
Eigenvectors

Numbered 1 to p

88

The figure is designed to be a stand-alone analysis product; that is, it can be

shared electronically using any common picture file formats (.JPG, .PNG, .BMP, etc.)

For this reason, the algorithm used to produce the result, the dataset name, and the data

size are all included in the figure title. Referring again to Figure 4.3, the example shown

is "MEV Interpolated", "ForestFires", and "(517x13)", respectively.

4.4.2. Components Dimensionality and Variation Summary Output

 Horn’s test is a visual analysis tool to aid in determining dimensionality but it is

only one tool. Because PCA is a variance-oriented technique, understanding how the

variance is distributed among the components provides the analyst with more

information, often leading to better solution options for decision makers. The final step

in completing Horn’s test is to read back the variance dispersion information captured

during evaluation of each component in relation to Horn’s curve. This is done in the

MATLAB Command Window and appears below the main program user interface

(shown previously in Figure 4.1).

 Figure 4.4 is a summary of the dimensionality assessment. The dimensionality

estimate is equal to the number of components that meet Horn’s test criteria for

extraction. This is the actionable part of the analysis and is the solution to the problem

statement. Following the dimensionality estimation, we can determine how the variance

is spread among the components. In the Forest Fires data, one component (C5) is

contested and its eigenvalue is 1.0637.

89

Figure 4.4. Components dimensionality and variance summary output.

 By applying Equation (3.8) (we do not specify a target variance T in this case) to

the j = 4 principal components in the dimensionality assessment, we get a variance

proportion of

    

1

4

1 2 3 4

1

1
, : , , (0)

1 1 1 7.5538
3.3153 1.5693 1.4369 1.2323

13 13

 0.58106

j

i

i

i

i

T j p i j p
p

p p



    





   

        







which is the value given for "Proportion of total variance explained

by Horn’s" in Figure 4.4.

 Below that, in the next two lines, is the result of applying Equation (3.7).

 -> Please make a selection (1-10) or (0): 1
Getting eigenvalues of (517x13) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 4 principal components by
Horn's test. There are a total of 1 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative
aspects of the study that are particular to a dataset,
purpose of the study, and analyst selection.)

-->Component #: 5 Eigenvalue: 1.0637 <--

Proportion of total variance explained by Horn's = 58.11%.
Additional proportion of total variance explained by the
contested "between the curves" components: 8.18%.
If 1 contested components are included, proportion = 66.29%.
**
THE FILENAME USED IN THIS ANALYSIS IS ForestFires

End of processing.

90

5

, : , (0)

1.0637
0.08182

13

i i p i p
p

p





  

 

If the two findings (Horn’s test and any contested components) are combined, Equation

(3.8) is reevaluated for significant and contest components and the proportion of variance

explained by the five components is 0.6629, or 66.29%. A gain of 8.18% variance might

be significant to the analyst, and if so, then the number of principal components equals

five. The feature of tabulated variance permits some flexibility in the analyst’s

assessment.

 Included as information to the user are the top two lines (above the *Summary*

block); they occur during script execution just to show the program has not stalled in a

routine. For reference, the user can see what size the data is without having the figure

(such as Figure 4.3) visible. The last couple lines of the screen output is a read back of

the filename used for the analysis and notification that the script has completed execution

and has stopped processing.

4.5. Running of The Second-Order Model Script

We have just seen how to select a dataset and interpret the visual and summary

results for the mean eigenvalue solution. What about the linear regression second-order

model (2OM) and the table of coefficients?

The two approaches use an identical user interface for input and output. There are

a few subtle differences within the code, mostly due to what lookup table and how the

mean eigenvalues are determined; otherwise, each version shares the nearest neighbors

91

search, interpolation of surrogate curves, and data plotting routines. To distinguish the

graphical results, the titles of every figure include what type of solution was used to

produce it (MEV or 2OM).

We conclude this section with an example of output from the 2OM solution

approach. It is shown here in Figure 4.5 using the Forest Fires data from Figure

4.5, this time without the bumper stickers.

Figure 4.5. Interpolated second-order model (2OM) solution of Horn’s test of the

ForestFires dataset. Details are similar to those found in Figure 4.3.

4.6. Challenges

 Constructing an algorithm that handles data of different sizes is not problematic;

handling data within stated constraints (min/max bounds in the lookup table, no

underdetermined sets in this case) requires more methodical planning and logic in the

scripts but is still controllable. The greater unknown is the format of the data existing in

92

the real-world: Weak or strong correlation, multicollinearity, non-constant variance,

different probability distributions are all valid concerns. A perfect solution does not

exist; a calculated manner in which these issues are handled is a reasonable goal. An

attempt was made to stress the algorithms presented herein using a representative sample

of both size and variety of data. Certainly not every possible configuration of data was

presented to the algorithm for testing. Therefore, the author anticipates that unexpected

results in the future may be a possibility due to the behavior of the eigenvalues affected

by characteristics of the sample data. Part of being an analyst is discovery through

exploration; situations just described are opportunities to investigate underlying causes.

4.6.1. Lookup Table Size

Presently, the limiting factor in application is the size of the lookup table. The

only way to increase its size is to run Monte Carlo simulation on unmapped (p, n) pairs in

the study region. As the data size increases, particularly as the number of variables

grows, it will take much longer to add each new row to the lookup table. Expanding the

(p, n) region-of-interest is possible and is made more attractive given that the 2OM is

comparable in performance to the MEV. It is straight-forward to process the least-

squares fitted coefficients and augment the lookup table. The implication is the table of

mean eigenvalues will not advance beyond what currently is in the application, but given

the ancillary goal of creating as small a data footprint as possible, the omission of future

entries to T is plausible.

93

4.6.2. Software Required

Not every computer runs MATLAB and not every practitioner is well-versed in

MATLAB usage. As such, the target audience is presently only MATLAB users.

Fortunately, MATLAB output is used easily in other applications:

- Graphs can be shared as metafiles or a number of picture formats and

included as objects in MS Word® and MS PowerPoint®.

- All Command Window text can be copied and pasted as editable text and

MATLAB variables can be copied from the Workspace and moved to MS

Excel® for editing in a spreadsheet (the opposite is also true).

- A low-tech but workable approach is to copy and paste the Horn’s test data

into an Excel spreadsheet and use the graphing capability of Excel to

reproduce the figure in MS Office®.

 A desirable solution is cross-product porting of the script to Java® or MS Office.

The MathWorks produces a free compiler and packager called MCR (MATLAB

Compiler Runtime). This author has not worked with MCR but it appears to offer an

excellent way to share .m files among users who do not have access to MATLAB.

4.7. Chapter Summary

The results achieved quite satisfactory and meet the stated research objective: To

develop an accurate tool for determining the number of components to retain. The

additional objectives of automating the tool to remove unwarranted subjective evaluation

of the results were also reached. Additionally, the non-primary objectives of

incorporating common visual elements of PCA stopping rules (the scree line and Kaiser’s

94

 criterion) to assist the practitioner were also met.

Finally, the MATLAB user interface developed makes easy work of loading data

and then provides summary results for the dimensionality estimate and any contested

components (that is, Horn’s test and Kaiser’s criterion arrive at different conclusions).

The user is provided information regarding the total amount of original variance

explained by the dimensionality assessment and, if there are contested components, what

additional variance the contested components represents.

Comparisons of both solution algorithms are thus far identical in both visual

analysis and variance summary findings. The side-by-side results of each comparison are

not included in this chapter; please see Appendix I: Results for Sampled Datasets. For a

line-by-line list of all the computer code leading to a result described by this thesis,

please see Appendix II: MATLAB Scripts.

95

9
5

V. Discussion

5.1. Relevance of the Current Investigation

Automation of Horn’s method provides a powerful tool for PCA. During the

literature review, several authors published findings in regard to the accuracy of various

component extraction stopping rules: Horn’s technique received remarks verifying a high

level of component identification accuracy.

In contrast, the most widely-used stopping rule is Kaiser’s K1 criterion: Retain

components with an eigenvalue greater than or equal to one, discard those less than that.

A simple analogy for this thinking (and there are certainly others) is one would not read a

book and then write a lengthier summary than the book is long, so why keep a factor that

has less summarizing power than the variable it is meant to transform? This is where

science bows to art; the analyst is responsible to his practice to make an informed

decision about the purpose of the analysis. There are qualitative aspects that have to

augment all of these stopping rules.

5.2. Conclusions of Research

The author of this thesis is of the opinion why Horn’s procedure is not used more

often is it requires more preparatory work by the analyst and, to this author’s knowledge,

popular statistics software packages do not offer direct computation of it. Lack of

understanding regarding the black box nature of specialized commercial software leaves

one at a disadvantage when unique challenges require unique solution strategies – if the

only tool in the tool shed is a hammer, suddenly all the problems appear to have nails for

solutions. It is likely not everyone has the time, skill, or impetus to pursue application of

96

9
6

Horn’s test for an individual problem. It is hoped that the work shared in this thesis

permits others to gain insight into multivariate analysis solution techniques they might

not previously been inclined to explore.

5.3. Limitations

 Only eleven datasets available in the public domain were tested and it is possible

that data of unknown configurations could present pathological scree lines. One such

case (and there are likely others) is a scree line that resembles a sideways view of a set of

sloping steps that may hop back and forth across Horn’s curve. Such a dataset probably

exists – it meets the stated assumptions for k, is not underdetermined, is monotonically

decreasing – and will present dimensionality results that have not yet been considered.

It is also anticipated a case exists in which the MEV and 2OM solutions may

disagree in their conclusions; that is, each algorithm presents a different estimate of

dimensionality. For instance, datasets featuring shallow intersection angles between

Horn's curve and the scree line (i.e., almost parallel along some interval of components)

will likely to lead to under extraction of components by the 2OM. Since under extraction

discards information, it is this author’s recommendation that, should this situation be

encountered, the MEV strategy be used to verify the 2OM dimensionality assessment.

5.4. Future Work/Further Research

1) Confirmatory analysis of the accuracy of the Horn’s test algorithm should be

an immediate next step. This can be accomplished by structuring of random data with

known dimensionality and then presenting it to the algorithm as a sampled dataset.

97

9
7

2) Creation of a routine to handle limited problems beyond what the lookup table

can immediately reference. A dry run on a real-world dataset of 112,000+ observations

on 121 variables was successfully completed in under five minutes of processing time.

There is certainly room to expand in solving small p, large n problems without adverse

expenditure of computer resources while analyses await.

3) Combining the MATLAB script with a graphical user interface capable of

giving easier access to the results is desirable.

4) Artificial neural networks present possibilities to learn the region-of-interest. If

so, not only can estimates of dimensionality be determined for (p′, n′) but the need to

have ready the (p, n) lookup table is eliminated.

5) Principal components analysis is a gateway to other multivariate analysis

techniques. Expanding the code, or modularizing it, so that other methods (specifically

factor analysis) can access the dimensionality estimation extends application.

98

9
8

Appendix I: Results for Sampled Datasets

The University of California-Irvine Center for Machine Learning and Intelligent Systems

data repository (http://archive.ics.uci.edu/ml/) was the source used for real-world data.

Without the resources of the UCI website, this thesis would have been limited in scope.

 During the course of experimentation, some data would not complete

eigendecomposition due to NaN, Inf, or non-numerical data types (missing entries or

string characters). Trimming of data occurred at the minimum level necessary to achieve

functionality. Wherever possible, rows (observations) were deleted in lieu of columns

(variables). As such, these truncations may result in smaller sizes of the named datasets

than from what is found elsewhere or used by researchers for other analyses.

 The bibliography lists contributing donors or the stewards of such data; however,

in an effort to invite additional exploration, the URLs of each dataset is given here:

Table 5.1. Web addresses of each dataset used to test the algorithms.

Dataset Web Address (URL)

Forest Fires http://archive.ics.uci.edu/ml/datasets/Forest+Fires

Glass http://archive.ics.uci.edu/ml/datasets/Glass+Identification

Parkinsons http://archive.ics.uci.edu/ml/datasets/Parkinsons

SECOM http://archive.ics.uci.edu/ml/datasets/SECOM

Seeds http://archive.ics.uci.edu/ml/datasets/seeds

Semeion http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

Steel Plates http://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults

WI Breast Cancer

(Original)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

Wines 1 http://archive.ics.uci.edu/ml/datasets/Wine

Wines 2 http://archive.ics.uci.edu/ml/datasets/Wine+Quality

Iris http://archive.ics.uci.edu/ml/datasets/Iris

99

9
9

Figure AI01. Dataset Forest Fires (Cortez & Morais, 2007)

 -> Please make a selection (1-10) or (0): 1
Getting eigenvalues of (517x13) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 4 principal components by
Horn's test. There are a total of 1 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative
aspects of the study that are particular to a dataset,
purpose of the study, and analyst selection.)

-->Component #: 5 Eigenvalue: 1.0637 <--

Proportion of total variance explained by Horn's = 58.11%.
Additional proportion of total variance explained by the
contested "between the curves" components: 8.18%.
If 1 contested components are included, proportion = 66.29%.
**
THE FILENAME USED IN THIS ANALYSIS IS ForestFires

End of processing.

100

1
0
0

Figure AI02. Dataset Glass (Frank & Asuncion, 2010)

 -> Please make a selection (1-10) or (0): 5
Getting eigenvalues of (210x7) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 2 principal components.
Proportion of total variance explained = 88.98%.
There are no contested components.
**
THE FILENAME USED IN THIS ANALYSIS IS Seeds

End of processing.

101

1
0
1

Figure AI03. Dataset Parkinsons (Little, McSharry, Roberts, Costello, & Moroz, 2007)

 -> Please make a selection (1-10) or (0): 3
Getting eigenvalues of (195x24) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 4 principal components by
Horn's test. There are a total of 1 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative
aspects of the study that are particular to a dataset,
purpose of the study, and analyst selection.)

-->Component #: 5 Eigenvalue: 1.0657 <--

Proportion of total variance explained by Horn's = 78.73%.
Additional proportion of total variance explained by the
contested "between the curves" components: 4.44%.
If 1 contested components are included, proportion = 83.17%.
**
THE FILENAME USED IN THIS ANALYSIS IS Parkinsons

End of processing.

102

1
0
2

Figure AI04. Dataset SECOM (Frank & Asuncion, 2010)

 -> Please make a selection (1-10) or (0): 3
Getting eigenvalues of (195x24) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 4 principal components by
Horn's test. There are a total of 1 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative
aspects of the study that are particular to a dataset,
purpose of the study, and analyst selection.)

-->Component #: 5 Eigenvalue: 1.0657 <--

Proportion of total variance explained by Horn's = 78.73%.
Additional proportion of total variance explained by the
contested "between the curves" components: 4.44%.
If 1 contested components are included, proportion = 83.17%.
**
THE FILENAME USED IN THIS ANALYSIS IS Parkinsons

End of processing.

103

1
0
3

Figure AI05. Dataset Seeds (Kulczycki, Kowalski, Lukasik, & Zak, 2012) (Charytanowicz & Niewczas, 2012)

 -> Please make a selection (1-10) or (0): 5
Getting eigenvalues of (210x7) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 2 principal components.
Proportion of total variance explained = 88.98%.
There are no contested components.
**
THE FILENAME USED IN THIS ANALYSIS IS Seeds

End of processing.

104

1
0
4

Figure AI06. Dataset Semeion Handwritten Digit (Semeion Research Center for the Science of Communication, 2008)

 -> Please make a selection (1-10) or (0): 6
Getting eigenvalues of (1593x266) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 38 principal components by
Horn's test. There are a total of 15 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative
aspects of the study that are particular to a dataset,
purpose of the study, and analyst selection.)

-->Component #: 39 Eigenvalue: 1.4770 <--
-->Component #: 40 Eigenvalue: 1.4516 <--
-->Component #: 41 Eigenvalue: 1.3701 <--
-->Component #: 42 Eigenvalue: 1.3398 <--
-->Component #: 43 Eigenvalue: 1.3192 <--
-->Component #: 44 Eigenvalue: 1.2618 <--
-->Component #: 45 Eigenvalue: 1.2463 <--
-->Component #: 46 Eigenvalue: 1.1977 <--
-->Component #: 47 Eigenvalue: 1.1289 <--
-->Component #: 48 Eigenvalue: 1.1103 <--
-->Component #: 49 Eigenvalue: 1.0926 <--
-->Component #: 50 Eigenvalue: 1.0761 <--
-->Component #: 51 Eigenvalue: 1.0497 <--
-->Component #: 52 Eigenvalue: 1.0218 <--
-->Component #: 53 Eigenvalue: 1.0073 <--

Proportion of total variance explained by Horn's = 70.17%.
Additional proportion of total variance explained by the
contested "between the curves" components: 6.82%.
If 15 contested components are included, proportion = 76.99%.
**
THE FILENAME USED IN THIS ANALYSIS IS Semeion

End of processing.

105

1
0
5

Figure AI07. Dataset Steel Plates Faults (Semeion Research Center for the Science of Communication, 2010)

 -> Please make a selection (1-10) or (0): 7
Getting eigenvalues of (1941x25) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 6 principal components by
Horn's test. There are a total of 1 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative
aspects of the study that are particular to a dataset,
purpose of the study, and analyst selection.)

-->Component #: 7 Eigenvalue: 1.0076 <--

Proportion of total variance explained by Horn's = 77.74%.
Additional proportion of total variance explained by the
contested "between the curves" components: 4.03%.
If 1 contested components are included, proportion = 81.77%.
**
THE FILENAME USED IN THIS ANALYSIS IS SteelPlates

End of processing.

106

1
0
6

Figure AI08. Dataset Wisconsin Breast Cancer Study (Original) (Wolberg & Mangasarian, 1990) (Wolberg W. H., 1992)

 -> Please make a selection (1-10) or (0): 8
Getting eigenvalues of (699x9) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 1 principal components.
Proportion of total variance explained = 67.52%.
There are no contested components.
**
THE FILENAME USED IN THIS ANALYSIS IS WIBreastCancer

End of processing.

107

1
0
7

Figure AI09. Dataset Wines (Frank & Asuncion, 2010)

 -> Please make a selection (1-10) or (0): 10
Getting eigenvalues of (1599x11) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 4 principal components.
Proportion of total variance explained = 70.81%.
There are no contested components.
**
THE FILENAME USED IN THIS ANALYSIS IS Wines2

End of processing.

108

1
0
8

Figure AI10. Dataset Wine Quality (Cortez, Cerdeira, Almeida, Matos, & Reis, 2009)

 -> Please make a selection (1-10) or (0): 10
Getting eigenvalues of (1599x11) sampled data...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 4 principal components.
Proportion of total variance explained = 70.81%.
There are no contested components.
**
THE FILENAME USED IN THIS ANALYSIS IS Wines2

End of processing.

109

1
0
9

Figure AI11. Dataset Iris (Frank & Asuncion, 2010)

 -> Please make a selection (1-10) or (0): 0
Please enter the filename (script assumes .mat)
--> Iris
The selected filename has data small enough for a direct
calculation of Horn's curve.

Getting eigenvalues of (150x4)...Done!
Plotting all curves...Done!
*************************** Summary ******************************
Dimensionality is estimated at 1 principal components.
Proportion of total variance explained = 72.77%.
There are no contested components.
**
THE FILENAME USED IN THIS ANALYSIS IS Iris

End of processing.

110

Appendix II: MATLAB Scripts

Main Script: HornsMethodRandomMEV.m

%Original code by Captain Andrew L. Bigley, USAF. Written for partial

%fulfillment of a Master's of Science Degree in Operations Research, The

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not

%reflect the official policy or position of the United States Air Force,

%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject

%to copyright protection in the United States.

%21 March 2013

%

%%Graph the eigenvalue curves for one coordinate pair. This script
%references a table of pre-determined, sorted mean eigenvalues and
%then interpolates to trap the (p',n') pair in the information in the
%table. Various configurations that may be presented by a user to the
%script are discussed below.

%

%initialize the workspace environment
close all; clear all; clc
%initialize global variables--they are in the datafile
global tablex ssizep ssizen; %these variables are global in nature

load LookupTable.mat

maxp = max(tablex(:,1)); %the largest variable value in the data
minp = min(tablex(:,1)); %the smallest variable (a.o. 13 Jan minp=5)
 %PCA on less than 5 variables?!?
maxn = max(tablex(:,2)); %largest # of observations in the mapped data
minn = min(tablex(:,2)); %smallest # of obs in the mapped data
cr = sprintf('\n'); %carriage return variable; use with 'disp'
%
%display opening message
disp(['This script will find Horn''s Curve as described by Monte ' cr...
 'Carlo simulation generated and sorted mean eigenvalues. ' cr...
 'This version evaluates random data of selected (p'',n''). ' cr...
 'For use with actual, real world datasets, see script ' cr...
 'HornsMethodSampled.']); cr;
disp(['The input values must be within these ranges: ' cr...
 ' ']);
fprintf(' # of variables (p) --> {%d,%d} \n',minp,maxp)
fprintf(' # of observations (n) --> {%d,%d} \n',minn,maxn)
disp([' ' cr...
 'Also, make sure p is not less than n. ']); cr; cr;

%***check for input violations (out of range on p or n and n < p)***
%set datavalid flag to 'false'. Assume the following:
paramvalid = false; %valid input relation for p to n hasn't been rec'd
pvalid = false; %valid variable input has not been entered
nvalid = false; %valid observations input has not been entered

111

%
while paramvalid == false %assume invalid parameters (relation of p,n)
 while pvalid == false %assume invalid p value (relation to tablex)
 fprintf('Which variable (p) to graph?\n')
 getp = input('--> '); %the variable of interest (pprime)
 if getp < minp || getp > maxp; %check variables
 fprintf('-->Check (p). Selection is out of range.\n')
 elseif getp >= minp && getp <= maxp
 pvalid = true;
 end
 end
 %
 while nvalid == false %assume invalid n value (relation to tablex)
 fprintf('How many observations (n)?\n')
 getn = input('--> '); %the observations of interest (nprime)
 if getn < minn || getn > maxn; %check variables
 fprintf('-->Check (n). Selection is out of range.\n')
 elseif getn >= minn && getn <= maxn
 nvalid = true;
 end
 end
 %
 if getp > getn; %check n and p relation
 disp(['***There are more variables (p) than observations (n)' cr...
 'in this selection. The lookup table is constrained ' cr...
 'to no less than p = n. Press ''ctrl''+''pause/break''' cr...
 'if you need to stop this script.***']); cr; cr;
 pvalid = false; %give user a chance to reenter p
 nvalid = false; %give user a chance to reenter n
 elseif getp <= getn %&& pvalid == 1 && nvalid == 1
 paramvalid = true; %good input parameters to the lookup table;
 end %exit input error checking
end
%
%**
%**********************MATLAB variables usage******************************
%---NOTE: All code originally written in this script. Most of the variable
%referencing has been moved to functions that handle the scenarios listed
%in the box below this one.--
%'p' = "variable", 'n' = "observations", 'filename' = name of data file
%(not the name of the data matrix which is always X, by my default)
%'mev' = mean eigenvalue reference
%'getp' = variable we're going to find (user-supplied); consider p-prime
%'getn' = observations we're going to find (user-supplied); n-prime
%row = where rows of variables and observations are found in the data
%X = data matrix. Lookup table reference tablex is a rename of X
%S = child of X-->the nearest neighbors of variables. Used inside fx.
%Y = child of S-->the row entries of the nn observations on getn (in
%fx)
%'nn' --> "nearest neighbor" in all instances.
% --> adding 'u' = "upper", 'l' = "lower", or 'p' and 'n' (see above)
%'ind' = "index" (of a row or column)
%**
%There are seven scenarios that (p',n') that can be presented:
%1) p' not in table, n' not in table (both in range)-->interp p',n'
%2) p' not in table, n' in table (both in range)-->interp p', use n
%3) p' in table, n' not in table (both in range)-->use p, interp n'

112

%4) p' in table, n' in table (both in range)-->use p,n
%5) p' out of range, n' in range-->data below diagonal (illegal combo)
%6) p' in range, n' out of range-->largest recorded obs curve for interp p'
%7) p' out of range, n' out of range-->provide largest obs for largest p
%**
%******look for the nearest neighbor VARIABLES in the lookup table*********
[rp] = find(tablex(:,1)==getp); %look for the input variable in the table;
[curves,nnup,nnlp,nnun,nnln] = findcurves(getp,getn,minp,maxp,minn,maxn);
%*********Call MCS on (p',n') as a proof-of-concept check***************
fprintf('Calling EigenMean for mean eigenvalues of (%d,%d)...',getp,getn)
[mevvec] = EigenMean(getp,getn,100); %mean eigenvalue vector for (p',n')
 %mevvec is a matrix of row vectors
fprintf('Done!\n')
%
%plot the variables
fprintf('Plotting all curves...')
%create some new variables to increase graphing readability
minobs = nnln;
maxobs = nnun;
%set plot boundaries
xmin = 0.8; %left bound for x-axis
xmax = nnlp + 0.2; %right bound for x-axis
ymin = 0; %lower bound for y-axis
ymax = curves(1,1); %upper bound for y-axis; largest mean ev in data
%************************set plot vectors**********************************
%remaining variables have already been found; listed here for reference in
%terms of graphing ease. Order is the highest plot to the lowest plot
eind = size(curves,2); %number of columns in the curve
curve1 = curves(1,:); %nnun mev's for nnup
curve2 = curves(2,:); %interpolated mev's for getn on nnun
curve3 = curves(3,:); %nnun mev's for nnlp
curve4 = curves(4,:); %interpolated mev's for getp
curve5 = mevvec(1:eind); %from the MCS run
curve6 = curves(5,:); %nnln mev's for nnlp
curve7 = curves(6,:); %interpolated mev's for getn on nnln
curve8 = curves(7,:); %nnun mev's for nnlp
xx = 1:eind; %x-values; common to all plots
figure(1); box on; hold on;
axis([xmin xmax ymin ymax + 0.5]);
set(gca,'XTick',1:getp); %display only integers on x axis
%
if getp > 30 %keep scaling under control
 set(gca,'XTick',floor(linspace(1,nnlp,10)))
end
%
plot(xx,curve1,'bs-','LineWidth',2) %tabled mev's (nnup,nnln)
plot(xx,curve2,'b:') %upper interp model
plot(xx,curve3,'bo-','LineWidth',2) %tabled mev's (nnup,nnun)
plot(xx,curve6,'ks-','LineWidth',2) %tabled mev's (nnlp,nnln)
plot(xx,curve7,'k:') %lower interp model
plot(xx,curve8,'ko-','LineWidth',2) %tabled mev's (nnlp,nnun)
plot(xx,curve4,'r:d') %Interpolated solution
plot(xx,curve5,'r','LineWidth',2) %Actual eigenmean solution
%
%(A) goes here if needed. See bottom of script. All plot lines above.
line([xmin xmax],[1 1],'Color','k'); %Kaiser's criterion
%

113

%chart details
xlabel('Component(C_i)','FontSize',12)
ylabel('$$\mathsf{\bar \lambda}$$',...
 'interpreter','latex','fontsize',14)
title(['MEV Interpolation at Point (',...
 int2str(getp),',',int2str(getn),')'],'FontWeight','bold',...
 'FontSize',12)
%(B) goes here if needed. See bottom of script. Comment title above here.
%(C) goes here if needed. See bottom of script.
%break %uncomment if needed to run plain Horn's curve
legend(...
 ['Upper Nearest Neighbor (',int2str(nnup),',',int2str(nnln),')'],...
 ['Upper Interpolated Curve (',int2str(nnup),',',int2str(getn),')'],...
 ['Upper Nearest Neighbor (',int2str(nnup),',',int2str(nnun),')'],...
 ['Lower Nearest Neighbor (',int2str(nnlp),',',int2str(nnln),')'],...
 ['Lower Interpolated Curve (',int2str(nnlp),',',int2str(getn),')'],...
 ['Lower Nearest Neighbor (',int2str(nnlp),',',int2str(nnun),')'],...
 ['Interpolated Solution (',int2str(getp),',',int2str(getn),')'],...
 ['Horn''s Algorithm Soln (',int2str(getp),',',int2str(getn),')'],...
 'Location','NorthEast')
hold off
fprintf('Done!\n')
fprintf('***End of processing.***\n\n')
%
%end of program
%Extra stuff just to run a plain Horn's Curve
%(A)plot(xx,curve4,'r','LineWidth',2) %Interpolated solution
%(B)title(['Random Data of Size (',...
% int2str(getn),'x',int2str(getp),')'],'FontWeight','bold',...
% 'FontSize',12)
%(C)legend('Horn''s Curve','Kaiser''s Criterion (K1)','Location','NorthEast')

114

Main Script: HornsMethodRandom2OM.m

%Original code by Captain Andrew L. Bigley, USAF. Written for partial

%fulfillment of a Master's of Science Degree in Operations Research, The

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not

%reflect the official policy or position of the United States Air Force,

%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject

%to copyright protection in the United States.

%21 March 2013

%

%Graph the eigenvalue curves for one coordinate pair. This script
%references a table of pre-determined, sorted mean eigenvalues and
%then interpolates to trap the (p',n') pair in the information in the
%table. Various configurations that may be presented by a user to the
%script are discussed below.
%However, it differs from its ev_multiplots_MeanEV cousin in that it uses
%the 2OM coefficients and not the mean eigenvalues for direct reference***
%

%initialize the workspace
close all; clear all; clc
%initialize global variables--they are in the lookup table
global tablexbeta ssizep ssizen; %these variables are global in nature

load LookupTableCoeffs.mat

maxp = max(tablexbeta(:,1)); %the largest variable value in the data
minp = min(tablexbeta(:,1)); %the smallest variable (a.o. 13 Jan minp=5)
 %PCA on less than 5 variables?!?
maxn = max(tablexbeta(:,2)); %largest # of observations in the mapped data
minn = min(tablexbeta(:,2)); %smallest # of obs in the mapped data
cr = sprintf('\n'); %carriage return variable; use with 'disp'
%
%display opening message
disp(['This script will find Horn''s Curve as described by the ' cr...
 'linear regression second-order model coefficients. ' cr...
 'This version evaluates random data of selected (p'',n''). ' cr...
 'For use with actual, real world datasets, see script ' cr...
 'HornsMethodSampled2OM.']); cr;
disp(['The input values must be within these ranges: ' cr...
 ' ']);
fprintf(' # of variables (p) --> {%d,%d} \n',minp,maxp)
fprintf(' # of observations (n) --> {%d,%d} \n',minn,maxn)
disp([' ' cr...
 'Also, make sure p is not less than n. ']); cr; cr;

%***check for input violations (out of range on p or n and n < p)***
%set datavalid flag to 'false'. Assume the following:
paramvalid = false; %valid input relation for p to n hasn't been rec'd
pvalid = false; %valid variable input has not been entered
nvalid = false; %valid observations input has not been entered
%
while paramvalid == false %assume invalid parameters (relation of p,n)
 while pvalid == false %assume invalid p value (relation to tablex)

115

 fprintf('Which variable (p) to graph?\n')
 getp = input('--> '); %the variable of interest (pprime)
 if getp < minp || getp > maxp; %check variables
 fprintf('-->Check (p). Selection is out of range.\n')
 elseif getp >= minp && getp <= maxp
 pvalid = true;
 end
 end
 %
 while nvalid == false %assume invalid n value (relation to tablex)
 fprintf('How many observations (n)?\n')
 getn = input('--> '); %the observations of interest (nprime)
 if getn < minn || getn > maxn; %check variables
 fprintf('-->Check (n). Selection is out of range.\n')
 elseif getn >= minn && getn <= maxn
 nvalid = true;
 end
 end
 %
 if getp > getn; %check n and p relation
 disp(['***There are more variables (p) than observations (n)' cr...
 'in this selection. The lookup table is constrained ' cr...
 'to no less than p = n. Press ''ctrl''+''pause/break''' cr...
 'if you need to stop this script.***']); cr; cr;
 pvalid = false; %give user a chance to reenter p
 nvalid = false; %give user a chance to reenter n
 elseif getp <= getn %&& pvalid == 1 && nvalid == 1
 paramvalid = true; %good input parameters to the lookup table;
 end %exit input error checking
 %
end
%
%**
%**********************MATLAB variables usage******************************
%---NOTE: All code originally written in this script. Most of the variable
%referencing has been moved to functions that handle the scenarios listed
%in the box below this one.--
%'p' = "variable", 'n' = "observations", 'filename' = name of data file
%(not the name of the data matrix which is always X, by my default)
%'mev' = mean eigenvalue reference
%'getp' = variable we're going to find (user-supplied); consider p-prime
%'getn' = observations we're going to find (user-supplied); n-prime
%row = where rows of variables and observations are found in the data
%X = data matrix. Lookup table reference tablex is a rename of X
%S = child of X-->the nearest neighbors of variables. Used inside fx.
%Y = child of S-->the row entries of the nn observations on getn (in
%fx)
%'nn' --> "nearest neighbor" in all instances.
% --> adding 'u' = "upper", 'l' = "lower", or 'p' and 'n' (see above)
%'ind' = "index" (of a row or column)
%**
%There are seven scenarios that (p',n') that can be presented:
%1) p' not in table, n' not in table (both in range)-->interp p',n'
%2) p' not in table, n' in table (both in range)-->interp p', use n
%3) p' in table, n' not in table (both in range)-->use p, interp n'
%4) p' in table, n' in table (both in range)-->use p,n
%5) p' out of range, n' in range-->data below diagonal (illegal combo)

116

%6) p' in range, n' out of range-->largest recorded obs curve for interp p'
%7) p' out of range, n' out of range-->provide largest obs for largest p
%**
%******look for the nearest neighbor VARIABLES in the lookup table*********
[rp] = find(tablexbeta(:,1)==getp); %look for the input variable in the

table;
%mevsolnone is the function "(m)ean (e)igen(v)alue (sol)utio(n) (one)"
%it does all the work for nearest neighbors in variables and observations
[curves,nnup,nnlp,nnun,nnln] = findcurves2OM(getp,getn,minp,maxp,minn,maxn);
%*********Call MCS on (p',n') as a proof-of-concept check***************
fprintf('Calling EigenMean for mean eigenvalues of (%d,%d)...',getp,getn)
[mevvec] = EigenMean(getp,getn,100); %mean eigenvalue vector for (p',n')
 %mevvec is a matrix of row vectors
fprintf('Done!\n')
%
%plot the variables
fprintf('Plotting all curves...')
%set plot boundaries
xmin = 0.8; %left bound for x-axis
xmax = getp + 0.2; %right bound for x-axis
ymin = 0; %lower bound for y-axis
ymax = curves(1,1); %upper bound for y-axis; largest mean ev in data
%************************set plot vectors**********************************
%remaining variables have already been found; listed here for reference in
%terms of graphing ease. Order is the highest plot to the lowest plot

%plotting values are returned in curves matrix-->includes polyval, polyfit
eind = size(curves,2); %number of columns in the curve
curve1 = curves(1,:); %nnun mev's for nnup
curve2 = curves(2,:); %interpolated mev's for getn on nnun
curve3 = curves(3,:); %nnun mev's for nnlp
curve4 = curves(4,:); %interpolated mev's for getp
curve5 = mevvec(1:eind); %from the MCS run--yes, mean b/c random data
curve6 = curves(5,:); %nnln mev's for nnlp
curve7 = curves(6,:); %interpolated mev's for getn on nnln
curve8 = curves(7,:); %nnun mev's for nnlp
xx = 1:eind; %x-values; common to all plots
figure(1); box on; hold on;
axis([xmin xmax ymin ymax + 0.5]);
set(gca,'XTick',1:getp); %display only integers on x axis
%
if getp > 30 %keep scaling under control
 set(gca,'XTick',floor(linspace(1,nnlp,10)))
end
%
plot(xx,curve1,'bs-','LineWidth',2) %tabled mev's (nnup,nnln)
plot(xx,curve2,'b:') %upper interp model
plot(xx,curve3,'bo-','LineWidth',2) %tabled mev's (nnup,nnun)
plot(xx,curve6,'ks-','LineWidth',2) %tabled mev's (nnlp,nnln)
plot(xx,curve7,'k:') %lower interp model
plot(xx,curve8,'ko-','LineWidth',2) %tabled mev's (nnlp,nnun)
plot(xx,curve4,'r:d') %Interpolated solution
plot(xx,curve5,'r','LineWidth',2) %Actual eigenmean solution
%
line([xmin xmax],[1 1],'Color','k'); %Kaiser's criterion
%
%chart details
xlabel('Component (C_i)','FontSize',12)

117

ylabel('$$\mathsf{\hat \lambda}$$',...
 'interpreter','latex','fontsize',14)
title(['2OM Interpolation of Point (',int2str(getp),',',int2str(getn),...
 ')'],'FontWeight','bold','FontSize',12)
legend(...
 ['Upper Nearest Neighbor (',int2str(nnup),',',int2str(nnln),')'],...
 ['Upper Interpolated Curve (',int2str(nnup),',',int2str(getn),')'],...
 ['Upper Nearest Neighbor (',int2str(nnup),',',int2str(nnun),')'],...
 ['Lower Nearest Neighbor (',int2str(nnlp),',',int2str(nnln),')'],...
 ['Lower Interpolated Curve (',int2str(nnlp),',',int2str(getn),')'],...
 ['Lower Nearest Neighbor (',int2str(nnlp),',',int2str(nnun),')'],...
 ['Interpolated Solution (',int2str(getp),',',int2str(getn),')'],...
 ['Horn''s Algorithm Soln (',int2str(getp),',',int2str(getn),')'],...
 'Location','NorthEast')
hold off
fprintf('Done!\n')
fprintf('***End of processing.***\n\n')
%
%end of program

118

Main Script: HornsMethodSampledMEV.m

%Original code by Captain Andrew L. Bigley, USAF. Written for partial

%fulfillment of a Master's of Science Degree in Operations Research, The

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not

%reflect the official policy or position of the United States Air Force,

%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject

%to copyright protection in the United States.

%21 March 2013

%

%Graph the eigenvalue curves for a sampled (real-world) dataset.
%This script references a table of pre-determined, sorted mean eigenvalues
%and then interpolates to trap the (p',n') pair in the information in the
%table. Various configurations that may be presented by a user to the
%script are discussed below.
%
%initialize the workspace
close all; clear all; clc
%initialize global variables--they are in the lookup table
global tablex ssizep ssizen; %these variables are global in nature
%
%load the lookup table. Do not confuse with a sample dataset!!!
%Format expected by the program is [p n meaneigenvalues] where
%-->p = # variables => sorted descending;
%-->n = # observations => sorted ascending;
%-->meaneigenvalues = data elements => sorted descending from EigenMean
load LookupTable.mat
%
%initialize local variables
validdata = false; %flag to stay in the input loop
smallsamp = false; %data is 2-4 variables & can be direct calc'd
maxp = max(tablex(:,1)); %the largest variable value in the data
minp = min(tablex(:,1)); %the smallest variable (a.o. 13 Jan minp=5)
 %PCA on less than 5 variables?!?
maxn = max(tablex(:,2)); %largest # of observations in the mapped data
minn = min(tablex(:,2)); %smallest # of obs in the mapped data
cr = sprintf('\n'); %carriage return variable; use with 'disp'
%
%display opening message
disp(['This script will find Horn''s Curve to aid in making a ' cr...
 'Principal Components Analysis (PCA) dimensionality deter- ' cr...
 'mination for an actual--sampled--data set. Horn''s Curve ' cr...
 'is found by interpolating known, "ideal" data of size ' cr...
 'equivalent to the actual sample size. Constraints regard- ' cr...
 'ing input and what the script can do are listed below. ']); cr;
disp(['The input values must be within these ranges: ' cr...
 ' ']); cr;
fprintf(' # of variables (p) --> {%d,%d} \n',minp,maxp)
fprintf(' # of observations (n) --> {%d,%d} \n',minn,maxn)
disp([' ' cr...
 'A crucial condition to consider is underdetermined data; that' cr...
 'is, data having fewer observations n than features p. PCA of' cr...
 'underdetermined data is possible; however, this script does ' cr...

119

 'not accept such datasets. ' cr...
 ' ' cr...
 'Please choose a dataset to load. Type the number and press ' cr...
 '''Enter.'' If the dataset is not listed, choose ''0'' (zero)' cr...
 'and type in the filename. ' cr...
 '~~'

cr...
 '(1) Forest Fires ' cr...
 '(2) Glass ' cr...
 '(3) Parkinsons ' cr...
 '(4) SECOM ' cr...
 '(5) Seeds ' cr...
 '(6) Semeion Handwriting Characters ' cr...
 '(7) Steel Plates ' cr...
 '(8) Wisconsin Breast Cancer Study ' cr...
 '(9) Wines (Set 1) ' cr...
 '(10) Wines (Set 2) ' cr...
 '..'

cr...
 '(0) Manually enter a filename ' cr...

'~~']);cr;
while validdata == false;
 sel = input('-> Please make a selection (1-10) or (0): ');
 %find out which dataset to load based upon user's selection
 switch sel
 case 1
 filename = 'ForestFires';
 case 2
 filename = 'Glass';
 case 3
 filename = 'Parkinsons';
 case 4
 filename = 'SECOM';
 case 5
 filename = 'Seeds';
 case 6
 filename = 'Semeion';
 case 7
 filename = 'SteelPlates';
 case 8
 filename = 'WIBreastCancer';
 case 9
 filename = 'Wines1';
 case 10
 filename = 'Wines2';
 otherwise
 fprintf('Please enter the filename (script assumes .mat)\n')
 filename = input('--> ','s');
 end
 load(filename,'-mat'); %the datafile to load
 [getn,getp] = size(X); %size of the data
 %check for all the conditions of X (min size, max size, n>p)
 if getn >= minn && getn <= maxn && getp >= minp && getp <= maxp
 validdata = true; %binary that data is valid for processing
 elseif getp > 1 && getp < 5
 validdata = true; %binary that data is valid for processing

120

 smallsamp = true; %binary that direct computation is valid
 fprintf('The selected filename has data small enough for a direct\n')
 fprintf('calculation of Horn''s curve.\n\n')
 else
 fprintf('The sample data is size %d x %d (obs x var).\n',getn,getp)
 fprintf('The lookup table is (%d to %d) observations and

\n',minn,maxn)
 fprintf('(%d to %d) variables. Please make another

selection.\n\n',minp,maxp)
 end

 if getp > getn; %check n and p relation--no underdetermined sets!
 disp(['***There are more variables (p) than observations (n)' cr...
 'in this data. The lookup table is constrained to no ' cr...
 'less than p = n. Press ''ctrl''+''pause/break''' cr...
 'to stop this script.***']); cr; cr;
 validdata = false;
 end
end
%
%call the interpolating function for p >= 5
%**
if smallsamp == false; %skip interpolation for small data
 [curves,nnup,nnlp,nnun,nnln]=findcurves(getp,getn,minp,maxp,minn,maxn);
else
 ssev = EigenMean(getn,getp,100);%small sample eigenvalues
 curves = zeros(7,getp);
 nnlp = getp;
 nnup = getp;
 nnln = getn;
 nnun = getn;
end
%*************************Get sorted eigenvalues of X**********************
fprintf('Getting eigenvalues of (%dx%d)...',getn,getp)
R = corr(X); %X is the data matrix
[V,D] = eig(R); %Don't need V eigenvectors (use for loads);
 %do need D eigenvalues
sev = sort(diag(D),'descend')'; %'sev'=sampled data eigenvalues
fprintf('Done!\n')
%**
%plot the variables
fprintf('Plotting all curves...')
%create some new variables to increase graphing readability
eind = size(curves,2); %number of columns in the curve
esev = size(sev,2); %want to show all the eigenvalues
%set plot boundaries
xmin = 0.8; %left bound for x-axis
xmax = esev + 0.2; %right bound for x-axis
ymin = 0; %lower bound for y-axis
ymax = sev(1) + 0.5; %upper bound for y-axis; largest ev in data
%find out where the two lines (interpolated and actual) cross; this is the
%entire utility of Horn's Curve in a nutshell
%************************set plot vectors**********************************
%remaining variables have already been found; listed here for reference in
%terms of graphing ease. Order is the highest plot to the lowest plot
%what's the case with Horn's curve? Small dataset = special situation.

%Note: 'curves' gets returned with all nearest neighbor & surrogate curves

121

if smallsamp == false
 curve4=curves(4,:); %interp sev's for getp
else
 curve4=ssev; %small sample eigenvalues
end
xx = 1:eind; %x-values; common to all interpolated curves
screeX = 1:esev; %vector of indices in sampled data eigenvalue
screeY = sev; %sampled data eigenvalues
d1 = length(curve4); %length of curve4
screeRX = zeros(1,d1); %preallocate the vector.
screeRY = zeros(1,d1); %eigenvalues that would be discarded by Horn's Test
count = 1; %reset counter in outer loop
qcount = 1; %reset counter for inner loop
qflag = false; %was a contested (for dimen.) eigenvalue found?
%get the eigenvalues that Horn's test indicates are less than the dim.
%they will be colored gray in the plot
for i=1:d1
 if (curve4(i) > sev(i)); %ck for point above Horn's curve
 screeRX(count) = i;
 screeRY(count) = sev(i);
 count = count + 1;
 %check to see if a point less than Horn's curve is > 1. These are
 %eigenvalues that we would keep just by using Kaiser's criterion
 if sev(i) > 1
 qflag = true;
 qx(1,qcount) = i;
 qy(1,qcount) = sev(i);
 qcount = qcount + 1;
 %next 8 lines summarize for the screen. Will only show if this

sub
 %is run.
 pctvar2 = sum((qy)/getp)*100;
 cpc = length(qx); %# of contested prin components
 end
 end
end
%clear up extra zeros in screeRX, screeRY
%if the input variable getp is a tabled value, there is nothing left to add
%and the remaining zeros in the array should be truncated.
%otherwise (at the 'else') reindex the array and count-in the smallest
%eigenvalues of sev that extend beyond the length of curve4. The smallest
%eigenvalues will be plotted but colored so that it's obvious they are not
%considered significant to PCA.
if nnlp == nnup %getp is a direct match in the table
 [rt] = find(screeRX == 0);
 screeRX(rt) = []; %truncate trailing zeros
 screeRY(rt) = []; %truncate trailing zeros
else
 d2 = screeRX(1):getp;
 screeRX = d2; %need the integers from the first cutoff eigen-
 screeRY = sev(d2); %value to the total number in sev
end
%
%Capture the PC and pct variance for Horn's
pchorns = length(screeX)-length(screeRX); %find the #ev's above the curve
pctvar1 = sum((screeY(1:pchorns))/getp)*100;
%

122

figure(1); box on; hold on;
set(gca,'XTick',1:getp); %display only integers on x axis
%
if getp > 30 %keep scaling under control
 set(gca,'XTick',floor(linspace(1,nnlp,10)))
 xmin = 0; %large values--give some more whitespace
 xmax = getp+getp*0.02; %
end
axis([xmin xmax ymin ymax]);
%
%uncomment these boxes to see where the tabled & interpolated curves are
%doing so will royally mess up the legend entries--therefore not
%recommended for 'long term' use
%plot(xx,curve1,'bs-','LineWidth',2) %tabled sev's (nnup,nnln)
%plot(xx,curve2,'b:') %upper interp model
%plot(xx,curve3,'bo-','LineWidth',2) %tabled sev's (nnup,nnun)
%plot(xx,curve6,'rs-','LineWidth',2) %tabled sev's (nnlp,nnln)
%plot(xx,curve7,'r:') %lower interp model
%plot(xx,curve8,'ro-','LineWidth',2) %tabled sev's (nnlp,nnun)
%plot(screeX,screeY,'b','LineWidth',2); %sampled data scree line (A)
plot(screeX,screeY,'b','LineWidth',2); %sampled data scree line
plot(xx,curve4,'r','LineWidth',2) %Interpolated Horn's Curve soln
line([xmin xmax],[1 1],'Color','k'); %Kaiser's criterion
%scatter(screeX,screeY,64,[1 0.5 0.3],'filled','MarkerEdgeColor','k');(B)
%this line above has good scatterplot color; looking for green, though
scatter(screeX,screeY,64,[0 0.9 0.2],'filled','MarkerEdgeColor','k');
scatter(screeRX,screeRY,64,[0.9 0.9 0.9],'filled','MarkerEdgeColor','k');
if qflag == true %contested eigenvalues betw. Horn's & K1. Display in red
 scatter(qx,qy,64,[1 0 0],'filled','MarkerEdgeColor','k');
end
%
%chart details
xlabel('Component (C_i)','FontSize',12)
ylabel('Eigenvalue (\lambda)','FontSize',12)
%ylabel('\lambda','FontSize',12)
legend('Scree Line','Horn''s Curve','Kaiser''s Criterion (K1)',...
 'Location','NorthEast')
%title('Sampled Data of Size (517x13)','FontSize',12,'FontWeight','bold')
title(['sev Interpolated Solution of Dataset "',filename,...
 '" (',int2str(getn),'x',int2str(getp),')'],...
 'FontWeight','bold','FontSize',12)
%break; %(D)uncomment if running plain curve
if qflag == true; %choose the correct legend; did we contest components?
 %if qflag = 1, then yes there is something here
 legend('Scree Line','Horn''s Curve',...
 'Kaiser''s Criterion (K1) = 1.0',...
 ['\bf',int2str(pchorns),' \rm \lambda > Horn''s Curve > K1'],...
 ['\bf',int2str(getp-pchorns-cpc),...
 ' \rm \lambda < Horn''s Curve < K1'],...
 ['\bf',int2str(cpc),' \rm K1 < \lambda < Horn''s Curve'],...
 'Location','NorthEast')
elseif qflag == false; %no contested points--both tests are in agreement
 legend('Scree Line','Horn''s Curve',...
 'Kaiser''s Criterion (K1) = 1.0',...
 ['\bf',int2str(pchorns),...
 ' \rm \lambda > Horn''s Curve > K1'],...
 ['\bf',int2str(getp-pchorns),...

123

 ' \rm \lambda < Horn''s Curve < K1'],...
 'Location','NorthEast')
end
hold off
fprintf('Done!\n')
%
%send summary to the screen
disp('*************************** Summary ******************************');

cr;
if qcount > 1; %qcount = #of contested eigenvalues for dimensionality
 %because qcount is also a loop marker, #ev's = val -1
 fprintf('Dimensionality is estimated at %d principal components

by\n',pchorns)
 fprintf('Horn''s test. There are a total of %d eigenvalues below

Horn''s\n',cpc)
 disp(['curve and greater than K1. These eigenvalues should be further'

cr...
 'evaluated against additional criteria for usefulness.' cr...
 '(Additional criteria == qualitative and quantitative ' cr...
 'aspects of the study that are particular to a dataset, ' cr...
 'purpose of the study, and analyst selection.) ']);cr;
 fprintf('\n')
 fprintf('-->Component #: %d Eigenvalue: %2.4f <--\n',[qx; qy]);
 fprintf('\n')
 fprintf('Proportion of total variance explained by Horn''s =

%2.2f%%.\n',pctvar1);
 fprintf('Additional proportion of total variance explained by the\n')
 fprintf('contested "between the curves" components: %2.2f%%.\n',pctvar2)
 fprintf('If %d contested components are included, proportion =

%2.2f%%.\n',cpc,pctvar1+pctvar2)
else
 fprintf('Dimensionality is estimated at %d principal

components.\n',pchorns)
 fprintf('Proportion of total variance explained = %2.2f%%.\n',pctvar1)
 fprintf('There are no contested components.\n')
end
disp('**');
fprintf('THE FILENAME USED IN THIS ANALYSIS IS %s \n',filename)
fprintf('\nEnd of processing.\n\n')
%
%end of script

124

Main Script: HornsMethodSampled2OM.m

%Original code by Captain Andrew L. Bigley, USAF. Written for partial

%fulfillment of a Master's of Science Degree in Operations Research, The

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not

%reflect the official policy or position of the United States Air Force,

%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject

%to copyright protection in the United States.

%21 March 2013

%

%Graph the eigenvalue curves for a sampled (real-world) dataset.
%This script references a table of pre-determined, sorted mean eigenvalues
%and then interpolates to trap the (p',n') pair in the information in the
%table. Various configurations that may be presented by a user to the
%script are discussed below.
%

%initialize the workspace
close all; clear all; clc
%initialize global variables--they are in the lookup table
global tablexbeta ssizep ssizen; %these variables are global in nature
%
%load the lookup table. Do not confuse with a sample dataset X!!!
%Format expected by the program is tablexbeta = [p n b2 b1 b0] where
%-->p = # variables => sorted descending;
%-->n = # observations => sorted ascending;
%-->{b2 b1 b0} = data elements => coefficients from the lookup table
load LookupTableCoeffs.mat
%
%initialize local variables
validdata = false; %boolean flag to stay in the input loop
smallsamp = false; %data is 2-4 variables & can be direct calc'd
maxp = max(tablexbeta(:,1)); %the largest variable value in the data
minp = min(tablexbeta(:,1)); %the smallest variable (a.o. 13 Jan minp=5)
 %PCA on less than 5 variables?!?
maxn = max(tablexbeta(:,2)); %largest # of observations in the mapped data
minn = min(tablexbeta(:,2)); %smallest # of obs in the mapped data
cr = sprintf('\n'); %carriage return variable; use with 'disp'
%
%display opening message
disp(['This script will find Horn''s Curve to aid in making a ' cr...
 'Principal Components Analysis (PCA) dimensionality deter- ' cr...
 'mination for an actual--sampled--data set. Horn''s Curve ' cr...
 'is found by interpolating known, "ideal" data of size ' cr...
 'equivalent to the actual sample size. Constraints regard- ' cr...
 'ing input and what the script can do are listed below. ']); cr;
disp(['The input values must be within these ranges: ' cr...
 ' ']); cr;
fprintf(' # of variables (p) --> {%d,%d} \n',minp,maxp)
fprintf(' # of observations (n) --> {%d,%d} \n',minn,maxn)
disp([' ' cr...
 'A crucial condition to consider is underdetermined data; that' cr...
 'is, data having fewer instances n than features p. PCA of ' cr...
 'underdetermined data is possible; however, this script does ' cr...

125

 'not accept such datasets. ' cr...
 ' ' cr...
 'Please choose a dataset to load. Type the number and press ' cr...
 '''Enter.'' If the dataset is not listed, choose ''0'' (zero)' cr...
 'and type in the filename. ' cr...
 '~~'

cr...
 '(1) Forest Fires ' cr...
 '(2) Glass ' cr...
 '(3) Parkinsons ' cr...
 '(4) SECOM ' cr...
 '(5) Seeds ' cr...
 '(6) Semeion Handwriting Characters ' cr...
 '(7) Steel Plates ' cr...
 '(8) Wisconsin Breast Cancer Study ' cr...
 '(9) Wines (Set 1) ' cr...
 '(10) Wines (Set 2) ' cr...
 '..'

cr...
 '(0) Manually enter a filename ' cr...

'~~']);cr;
while validdata == false;
 sel = input('-> Please make a selection (1-10) or (0): ');
 %find out which dataset to load based upon user's selection
 switch sel
 case 1
 filename = 'ForestFires';
 case 2
 filename = 'Glass';
 case 3
 filename = 'Parkinsons';
 case 4
 filename = 'SECOM';
 case 5
 filename = 'Seeds';
 case 6
 filename = 'Semeion';
 case 7
 filename = 'SteelPlates';
 case 8
 filename = 'WIBreastCancer';
 case 9
 filename = 'Wines1';
 case 10
 filename = 'Wines2';
 otherwise
 fprintf('Please enter the filename (script assumes .mat)\n')
 filename = input('--> ','s');
 end
 load(filename,'-mat'); %the datafile to load
 [getn,getp] = size(X); %size of the data
 %check for all the conditions of X (min size, max size, n>p)
 if getn >= minn && getn <= maxn && getp >= minp && getp <= maxp
 validdata = true;
 elseif getp > 1 && getp < 5
 validdata = true; %binary that data is valid for processing

126

 smallsamp = true; %binary that direct computation is valid
 fprintf('The selected filename has data small enough for a direct\n')
 fprintf('calculation of Horn''s curve.\n\n')
 else
 fprintf('The sample data is size %d x %d (obs x var).\n',getn,getp)
 fprintf('The lookup table is (%d to %d) observations and

\n',minn,maxn)
 fprintf('(%d to %d) variables. Please make another

selection.\n\n',minp,maxp)
 end

 if getp > getn; %check n and p relation
 disp(['***There are more variables (p) than observations (n)' cr...
 'in this data. The lookup table is constrained to no ' cr...
 'less than p = n. Press ''ctrl''+''pause/break''' cr...
 'to stop this script.***']); cr; cr;
 validdata = false;
 end
end
%
%call the interpolating function
%**
if smallsamp == false; %skip interpolation for small data
 [curves,nnup,nnlp,nnun,nnln]=findcurves2OM(getp,getn,minp,maxp,minn,maxn);
else
 ssev = EigenMean(getn,getp,100); %small sample eigenvalues
 curves = zeros(7,getp);
 nnlp = getp;
 nnup = getp;
 nnln = getn;
 nnun = getn;
end
%*************************Get sorted eigenvalues of X**********************
fprintf('Getting eigenvalues of (%dx%d) sampled data...',getn,getp)
R = corr(X); %X is the data matrix
[V,D] = eig(R); %Don't need Vy eigenvectors;
 %do need Dy eigenvalues
screeY = sort(diag(D),'descend')';
fprintf('Done!\n')
%**
%plot the variables
fprintf('Plotting all curves...')
%create some new variables to increase graphing readability
cols = size(curves,2); %number of columns in the curve
screeX = 1:cols; %vector of indices in sampled data eigenvalue
%set plot boundaries
xmin = 0.8; %left bound for x-axis
xmax = cols + 0.2; %right bound for x-axis
ymin = 0; %lower bound for y-axis
ymax = screeY(1) + 0.5; %upper bound for y-axis; largest ev in data
%find out where the two lines (interpolated and actual) cross; this is the
%entire utility of Horn's Curve in a nutshell
%************************set plot vectors**********************************
%Note: 'curves' returns all NN and surrogate curves; only 'curve4' needed
%what's the case with Horn's curve? Small dataset = special situation
if smallsamp == false
 curve4=curves(4,:); %interp betas for getp

127

else
 curve4=ssev; %small sample eigenvalues
end
d1 = length(curve4); %length of curve4--the est. Horn's curve
screeRX = zeros(1,d1); %preallocate the vector.
screeRY = zeros(1,d1); %eigenvalues that would be discarded by Horn's
count = 1; %reset counter in outer loop
qcount = 1; %reset counter for inner loop
qflag = 0; %was a contested (for dimen.) eigenvalue found?
for i=1:d1
 if curve4(i) > screeY(i) %screeY is the curve of sampled eigenvalues
 screeRX(count) = i;
 screeRY(count) = screeY(i);
 count = count + 1;
 %check to see if a point less than Horn's curve is > 1. These are
 %eigenvalues that we would keep just by using Kaiser's criterion
 if screeY(i) > 1
 qflag = 1;
 qx(1,qcount) = i;
 qy(1,qcount) = screeY(i);
 qcount = qcount + 1;
 pctvar2 = sum((qy)/getp)*100;
 cpc = length(qx); %# of contested prin components
 end
 end
end

d2 = screeRX(1):getp;
screeRX = d2; %need the integers from the first cutoff eigen-
screeRY = screeY(d2); %value to the total number in mev
%so how did the PC dimensionality estimate go? Capture the PC for Horn's
pchorns = length(screeX)-length(screeRX); %find the #ev's above the curve
pctvar1 = sum((screeY(1:pchorns))/getp)*100;
%..
figure(1); box on; hold on;
set(gca,'XTick',1:getp); %display only integers on x axis
%
if getp > 30 %keep scaling under control
 set(gca,'XTick',floor(linspace(1,nnlp,10)))
 xmin = 0; %large values--give some more whitespace
 xmax = getp+getp*0.02; %
end
axis([xmin xmax ymin ymax]);
plot(screeX,screeY,'b','LineWidth',2) %Scree line
plot(screeX,curve4,'r','LineWidth',2) %Interpolated Horn's Curve soln
line([xmin xmax],[1 1],'Color','k') %Kaiser's criterion
scatter(screeX,screeY,64,[0 0.9 0.2],'filled','MarkerEdgeColor','k');
scatter(screeRX,screeRY,64,[0.9 0.9 0.9],'filled','MarkerEdgeColor','k');
if qflag == true; %contested eigenvalues betw. Horn's & K1. Display in red
 scatter(qx,qy,64,[1 0 0],'filled','MarkerEdgeColor','k');
end
%chart details
xlabel('Component (C_i)','FontSize',12)
ylabel('Eigenvalue (\lambda)','FontSize',12)
title(['2OM Interpolated Solution of Dataset "',filename,...
 '" (',int2str(getn),'x',int2str(getp),')'],...
 'FontWeight','bold','FontSize',12)

128

if qflag == true; %choose the correct legend; did we contest components?
 %if true, then yes there is something here
 legend('Scree Line','Horn''s Curve',...
 'Kaiser''s Criterion (K1) = 1.0',...
 ['\bf',int2str(pchorns),...
 ' \rm \lambda > Horn''s Curve > K1'],...
 ['\bf',int2str(getp-pchorns-cpc),...
 ' \rm \lambda < Horn''s Curve < K1'],...
 ['\bf',int2str(cpc),...
 ' \rm K1 < \lambda < Horn''s Curve'],...
 'Location','NorthEast')
elseif qflag == false; %no contested points--both tests are in agreement
 legend('Scree Line','Horn''s Curve',...
 'Kaiser''s Criterion (K1) = 1.0',...
 ['\bf',int2str(pchorns),...
 ' \rm \lambda > Horn''s Curve > K1'],...
 ['\bf',int2str(getp-pchorns),...
 ' \rm \lambda < Horn''s Curve < K1'],...
 'Location','NorthEast')
end
hold off
fprintf('Done!\n')
%send summary to the screen
disp('*************************** Summary ******************************');

cr;
if qcount > 1; %qcount = #of contested eigenvalues for dimensionality
 %because qcount is also a loop marker, #ev's = val -1
 fprintf('Dimensionality is estimated at %d principal components

by\n',pchorns)
 fprintf('Horn''s test. There are a total of %d eigenvalues below

Horn''s\n',cpc)
 disp(['curve and greater than K1. These eigenvalues should be further'

cr...
 'evaluated against additional criteria for usefulness.' cr...
 '(Additional criteria == qualitative and quantitative ' cr...
 'aspects of the study that are particular to a dataset, ' cr...
 'purpose of the study, and analyst selection.) ']);cr;
 fprintf('\n')
 fprintf('-->Component #: %d Eigenvalue: %2.4f <--\n',[qx; qy]);
 fprintf('\n')
 fprintf('Proportion of total variance explained by Horn''s =

%2.2f%%.\n',pctvar1);
 fprintf('Additional proportion of total variance explained by the\n')
 fprintf('contested "between the curves" components: %2.2f%%.\n',pctvar2)
 fprintf('If %d contested components are included, proportion =

%2.2f%%.\n',cpc,pctvar1+pctvar2)
else
 fprintf('Dimensionality is estimated at %d principal

components.\n',pchorns)
 fprintf('Proportion of total variance explained = %2.2f%%.\n',pctvar1)
 fprintf('There are no contested components.\n')
end
disp('**');
fprintf('THE FILENAME USED IN THIS ANALYSIS IS %s \n',filename)
fprintf('\nEnd of processing.\n\n')
%
%end of script

129

Supporting Function: EigenMean.m

function[meanev] = EigenMean(p,n,k)

%Original code by Captain Andrew L. Bigley, USAF. Written for partial

%fulfillment of a Master's of Science Degree in Operations Research, The

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not

%reflect the official policy or position of the United States Air Force,

%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject

%to copyright protection in the United States.

%21 March 2013

%NOTE: The comment lines above can be removed w/no loss of function help.

%This function finds the mean eigenvalues for a n x p data set. The mean
%eigenvalues are useful for performing Principal Components Analysis and
%are found through repeated iterations of normal random probability distri-
%bution calls and subsequent determination of the correlation matrix of
%size n x p. The random number draws are done in Monte Carlo simulation
%iterations of size k. The function structure is:
%
%[meanev] = EigenMean(p,n,k)
%
%Inputs: p = # of variables;
% n = # of observations;
% k = # of Monte Carlo simulation iterations.
%
%Outputs: [meanev] is a return vector of size (1 x p) containing the
%sorted and averaged eigenvalues by index (#eigenvalues = #variables).
%All statistical assumptions are based upon data being distributed standard
%normal (mean = 0, standard deviation = 1). The correlation operator is
%applied to the random data matrix before extracting the eigenvalues.
%
%**The function will warn when:
%*1) p is overfitted to n; that is, n should be at least as large as p and
%preferably 3p <= n. Note that large values of k (>1000) will result in
%long processing times, and in instances with large (p,n) combinations it
%will appear that MATLAB has stopped responding. Therefore, unless utmost
%precision in the mean eigenvalues result is needed, such as least-squares
%model fitting where precise coefficient estimates must be made, consider
%using k = 1000 (the default setting if k is not provided). For curve
%fitting using interpolation methods, k = 100 may prove satisfactory if p
%is sufficiently large to "spread" the variation among more eigenvalues.
%The tradeoff is more iterations push towards convergence of the true means
%at the expense of processing time (minutes are not uncommon if p,n,k are
%as small as a 500 each). Longer times (hours) are not out the question if
%the input parameters are in the thousands.
%*2) If a warning regarding eigenvalue computations is received due to
%non-real or singular results, check for lack of linear independence in the
%input matrix columns. One or more variables are dependent on another.
%
%(Function version a.o. 14 Jan 13)

error(nargchk(2,3,nargin))
if nargin == 2 %need at least two inputs (p,n)
 fprintf('(Using default MCS iterations k=100)\n')

130

 k = 100;
end

if p > n
 fprintf('Data is overfitted (p>n). Check your input.\n')
 fprintf('Computations will complete but the smallest eigenvalues\n ')
 fprintf('reduce to approximately zero.\n')
end
%get started; initialize variables
mev = diag(zeros(p)); %size of eigenvalue mean accumulator
 %variable
for i=1:k
 Q = normrnd(0,1,n,p); %Generate Y--a random ~Norm(0,1)
 %matrix of n x p size
 Ry = corr(Q); %Correlation matrix of X
 [Vy,Dy] = eig(Ry); %Get (Vy) eigenvectors and
 %(Dy) eigenvalues for correlation of Y
 Dy = sort(diag(Dy),'descend'); %too big for 'eigs'; sort 'eig' result
 mev = mev + Dy; %adds each eigenvalue by array index
end
%
meanev = (mev.*(1/k))'; %return vector is the mean eigenvalues
 %of the correlation matrix sorted by
 %index
%
%end of function

131

Supporting Function: findcurves.m

function [curves,nnup,nnlp,nnun,nnln] = findcurves(p,n,minp,maxp,minn,maxn)
%Original code by Captain Andrew L. Bigley, USAF. Written for partial

%fulfillment of a Master's of Science Degree in Operations Research, The

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not

%reflect the official policy or position of the United States Air Force,

%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject

%to copyright protection in the United States.

%21 March 2013

%

%Mean Eigenvalue Solution, Case I:
% * Both the variable (p') and observation (n') is in the range of the *
% * lookup table mapped values. Also, (p') and (n') are not the minimum *
% * nor maximum values in the table and the nearest neighbors method will *
% * achieve satisfactory results. *
%
%The function returns six curves to the main executable:
%1) Upper nearest neighbor variable, lower nearest neighbor observation.
%2) Interpolated curve for p', based upon upper p & lower/upper obs.
%3) Upper nearest neighbor variable, upper nearest neighbor observation.
%4) Lower nearest neighbor variable, lower nearest neighbor observation.
%6) Interpolated curve for p', based upon lower p & lower/upper obs.
%7) Lower nearest neighbor variable, upper nearest neighbor observation.
%
global tablex ssizep ssizen
%
rnnup = []; %init the data row variable; also acts as a flag to search
rnnlp = []; %init the data row variable; also acts as a flag to search
rnnun = []; %init the data row variable; also acts as a flag to search
rnnln = []; %init the data row variable; also acts as a flag to search
%**
%******Check to see if data is already in the lookup table and at what*****
%*extremes. Data at or near an edge will need to be conditioned to accept*
%*something else than what the nearest neighbor search algorithm assigns***
%******Variable assignment***
[rp] = find(tablex(:,1) == p); %look for the input variable
if isempty(rp) == false; %found p' in tablex but where is it?
 %p' is the minimum variable
 if p == minp; %does p' = min table variable value?
 nnlp = p; %yes, assign lower neighbor to it
 nnup = minp + ssizep; %upper nearest neighbor is a stepsize up
 rnnup = rp; %abort the nnup, nnlp searches because
 rnnlp = rp; %variable assignments are made
 %p' is the maximum variable
 elseif p == maxp;
 nnlp = maxp - ssizep; %go a stepsize down for nnlp
 nnup = p; %already at highest variable value
 rnnup = rp; %abort the nnup, nnlp searches because
 rnnlp = rp; %variable assignments are made
 %p' is somewhere in the middle; in this case, pass all known info fwd.
 elseif p > minp && p < maxp
 nnlp = p;

132

 nnup = p;
 rnnup = rp;
 rnnlp = rp;
 end
end
%
if isempty(rp) == true; %did not find p' in the lookup table; search!
 ind = 0; %reset the search index
 while isempty(rnnup) && isempty(rp) %run loop while empty
 ind = ind+1; %incr the array counter
 [rnnup] = find(tablex(:,1) == p+ind); %add the index
 if ind > ssizep; %lookup table is corrupted
 fprintf('WARNING: Variable stepsize exceeded. Check tablex.\n')
 rp = -1; %value indicates we had a problem here.
 break; %let program critical stop
 end
 end
 nnup = p+ind; %got the upper neighbor
 %now find the lower nearest neighbor variable
 ind = 0; %reset the search index
 while isempty(rnnlp) && isempty(rp) %run loop while empty
 ind = ind+1; %incr the array counter
 [rnnlp] = find(tablex(:,1) == p-ind); %subtract the index
 if ind > ssizep; %lookup table is corrupted
 fprintf('WARNING: Variable stepsize exceeded. Check tablex.\n')
 rp = -2; %value indicates we had a problem here.
 break; %let program critical stop
 end
 end
 nnlp = p-ind; %got the lower neighbor
end %exit out of looking for the variable neighbor indices
%
%truncate the data into a subset of tablex meaningful to the analysis
%create sub-matrix S of only the rows of p(-) and p(+)
S = [tablex(rnnup,:); tablex(rnnlp,:)];
trimp = find(S(end,:) > 0); %inspect the last row because it's p(-)
S = S(:,trimp); %eliminate sparsity in S; upper/lower vars equal length
%S is the reduced matrix to work from for observation nearest neighbors****
%***********************Done with VARIABLES********************************
%***find the OBSERVATION nearest neighbors in the truncated data matrix S**
%find the start of zero entries in the lower bound (nnlp) and then trim
%each bound (upper and lower) to that length. Purpose: set equal number of
%variables in the vectors of matrix S
[rn] = find(S(:,2) == n); %look for the input observation
if isempty(rn) == 0; %found n in S but where is it?
 %n is the minimum observation
 if n == minn; %is the input = min(S) value?
 nnln = n; %yes, assign lower neighbor to it
 nnun = minn + ssizen; %upper nearest neighbor is a stepsize up
 rnnun = rn; %abort the nnun, nnln searches
 rnnln = rn; %
 %n is the maximum observation
 elseif n == maxn;
 nnln = maxn - ssizen; %go a stepsize down for nnln
 nnun = n; %already at highest observation value
 rnnun = rn; %abort the nnun, nnln searches
 rnnln = rn; %

133

 %n is somewhere in the middle; in this case, pass all known info fwd.
 elseif n > minn && n < maxn
 nnln = n;
 nnun = n;
 rnnun = rn;
 rnnln = rn;
 end
end
%
%search column 2 for the upper/lower bounds
if isempty(rn) == 1
 ind = 0; %reset the search index
 while isempty(rnnun) %run loop while rnnup is empty
 ind = ind+1; %...waiting to find a match
 [rnnun] = find(S(:,2) == n+ind); %ADD the index; search up from n
 end
 nnun = n+ind; %got a match! upper neighbor
%now find the lower nearest neighbor variable
 ind = 0; %reset the search index
 while isempty(rnnln) %run loop while rnnlp is empty
 ind = ind+1; %...waiting to find a match
 [rnnln] = find(S(:,2) == n-ind); %SUB the index; search dn from n
 end
 nnln = n-ind; %got a match! lower neighbor
end
%
%check for being on the diagonal n = p
if nnln == nnlp && nnun == nnup
 nnln = nnun; %lower takes same obs. value as upper
 [rnnln] = find(S(:,2) == nnln);
end
%truncate data one more time; subset of S meaningful to the analysis
%in between rows 2 and 3 is the solution for (getp,getn)
Y = [S(rnnln(1),:);
 S(rnnun(1),:);
 S(rnnln(2),:);
 S(rnnun(2),:)];
%**
%interpolation: find getn y-coordinate (mean eigenvalues) given a single
%x-coordinate. This is a an inverse use of the interp1 function, as it
%wants a unique x value for each y. Because the x-value is fixed along the
%curve (essentially the upper nearest neighbor and lower nearest neighbors
%are defining the curve), the interp1 routine used here has to cycle
%through a pair of points defined at the upper and lower nn observations.
%format is (ev=mean eigenvalue in all cases):
%ev we want to find = interp1([fixed lower nn obs; fixed upper nn obs],...
% [lower ev @ this x; upper ev @ this x],...
% observation we are trying to find)
%this routine handles the 'bias' factor; that is, how close getn is to
%either the upper or lower nearest neighbors impacts the
ncol = length(Y(1,3:end)); %number of y-data columns (contains mean ev's)
 %DO NOT USE ncol FOR PLOTTING--IT IS OFF BY 2
evu = zeros(1,ncol); %preallocate space
evl = zeros(1,ncol); %preallocate space
getev = zeros(1,ncol); %preallocate space
%**
%the logic in the following if/elseif lines evaluates four conditions for

134

%(p,n): The combinations that p and n are direct references in tablex.
%**
%(p,n) not in lookup tablex; interpolate a two-part solution.
%Part 1: Upper and lower curves. Interpolate nnln, nnun variables for n
%Part 2: Middle curve (the answer!). Using the curves from Part 1 as
% input, interpolate the variable curve in between nnup and nnlp.
%OR statement is (p,n) was on diagonal and corrections made (~line 171)
if (isempty(rn) == 1 && isempty(rp) == 1) && ~(nnln == nnun)
 for i = 1:ncol; %loop through the data; interpolate mev values
 %for ev([u]pper) and ev([l]ower) curves
 evu(i) = interp1([nnln;nnun],[Y(1,2+i);Y(2,2+i)],n); %upper ev's
 evl(i) = interp1([nnln;nnun],[Y(3,2+i);Y(4,2+i)],n); %lower ev's
 end
 %getev is the solution for the curve describing (p,n)
 for i = 1:ncol
 getev(i) = interp1([nnup;nnlp],[evu(i);evl(i)],p);
 end
%p is in tablex; n is not. Get (p,nnun) and (p,nnln) to interp a soln
elseif isempty(rn) == 1 && isempty(rp) == 0;
 for i = 1:ncol; %loop through the data; interpolate ev's
 getev(i) = interp1([nnln;nnun],[Y(1,2+i);Y(2,2+i)],n);
 end
 evu = getev; %already had the variable, only needed the
 evl = getev; %interpolation on the observations
%p is not in tablex, n is. Get (nnlp,n) and (nnup,n) to interp a soln
%OR statement is (p,n) was on diagonal and corrections made (~line 171)
elseif (isempty(rn) == 0 && isempty(rp) == 1) || nnln == nnun &&...
 ~(nnlp == nnup)
 evu = Y(1,3:end);
 evl = Y(3,3:end);
 for i = 1:ncol;
 getev(i) = interp1([nnup;nnlp],[evu(i);evl(i)],p);
 end
%(p,n) are both in the table. Direct referenced value--no interpolation
else isempty(rn) == 0 && isempty(rp) == 0;
 evu = Y(1,3:end);
 evl = evu;
 getev = evu;
end
%
curve1 = Y(1,3:end); %nnun mev's for nnup
curve2 = evu; %interpolated mev's for getn on nnun
curve3 = Y(2,3:end); %nnun mev's for nnlp
curve4 = getev; %interpolated mev's for getp
%curve5 = mevvec(1:eind); %from the MCS run; function EigenMean provides
curve6 = Y(3,3:end); %nnln mev's for nnlp
curve7 = evl; %interpolated mev's for getn on nnln
curve8 = Y(4,3:end); %nnun mev's for nnlp
%curve5 will not be seen in the function return matrix
curves = [curve1; curve2; curve3; curve4; curve6; curve7; curve8];
%
%end of function

135

Supporting Function: findcurves2OM.m

function [curves,nnup,nnlp,nnun,nnln]=findcurves2OM(p,n,minp,maxp,minn,maxn)
%Original code by Captain Andrew L. Bigley, USAF. Written for partial

%fulfillment of a Master's of Science Degree in Operations Research, The

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not

%reflect the official policy or position of the United States Air Force,

%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject

%to copyright protection in the United States.

%21 March 2013

%

%Linear regression second-order model, Case I:
% * Both the variable (p') and observation (n') is in the range of the *
% * lookup table mapped values. Also, (p') and (n') are not the minimum *
% * nor maximum values in the table and the nearest neighbors method will *
% * achieve satisfactory results. *
%
%The function returns six curves to the main executable:
%1) Upper nearest neighbor variable, lower nearest neighbor observation.
%2) Interpolated curve for p', based upon upper p & lower/upper obs.
%3) Upper nearest neighbor variable, upper nearest neighbor observation.
%4) Lower nearest neighbor variable, lower nearest neighbor observation.
%6) Interpolated curve for p', based upon lower p & lower/upper obs.
%7) Lower nearest neighbor variable, upper nearest neighbor observation.
%
global tablexbeta ssizep ssizen
%
rnnup = []; %init the data row variable; also acts as a flag to search
rnnlp = []; %init the data row variable; also acts as a flag to search
rnnun = []; %init the data row variable; also acts as a flag to search
rnnln = []; %init the data row variable; also acts as a flag to search
%**
%******Check to see if data is already in the lookup table and at what*****
%*extremes. Data at or near an edge will need to be conditioned to accept*
%*something else than what the nearest neighbor search algorithm assigns***
%******Variable assignment***
[rp] = find(tablexbeta(:,1) == p); %look for the input variable
if isempty(rp) == 0; %found p in tablex but where is it?
 %p is the minimum variable
 if p == minp; %is the input = min table variable value?
 nnlp = p; %yes, assign lower neighbor to it
 nnup = minp + ssizep; %upper nearest neighbor is a stepsize up
 rnnup = rp; %abort the nnup, nnlp searches
 rnnlp = rp; %
 %p is the maximum variable
 elseif p == maxp;
 nnlp = maxp - ssizep; %go a stepsize down for nnlp
 nnup = p; %already at highest variable value
 rnnup = rp; %abort the nnup, nnlp searches
 rnnlp = rp; %
 %p is somewhere in the middle; in this case, pass all known info fwd.
 elseif p > minp && p < maxp
 nnlp = p;

136

 nnlp = p;
 nnup = p;
 rnnup = rp;
 rnnlp = rp;
 end
end
%
if isempty(rp) == 1
 ind = 0; %reset the search index
 while isempty(rnnup) && isempty(rp) %run loop while empty
 ind = ind+1; %incr the array counter
 [rnnup] = find(tablexbeta(:,1) == p+ind); %add the index
 if ind > ssizep
 fprintf('WARNING: Variable stepsize exceeded. Check tablex.\n')
 rp = -1; %value indicates we had a problem here.
 break
 end
 end
 nnup = p+ind; %got the upper neighbor
 %now find the lower nearest neighbor variable
 ind = 0; %reset the search index
 while isempty(rnnlp) && isempty(rp) %run loop while empty
 ind = ind+1; %incr the array counter
 [rnnlp] = find(tablexbeta(:,1) == p-ind); %subtract the index
 if ind > ssizep
 fprintf('WARNING: Variable stepsize exceeded. Check tablex.\n')
 rp = -2; %value indicates we had a problem here.
 break
 end
 end
 nnlp = p-ind; %got the lower neighbor
end %exit out of looking for the variable neighbor indices
%
%truncate the data into a subset of tablex meaningful to the analysis
S = [tablexbeta(rnnup,:); tablexbeta(rnnlp,:)];
%S is the reduced matrix to work from for observation nearest neighbors****
%***********************Done with VARIABLES********************************
%***find the OBSERVATION nearest neighbors in the truncated data matrix S**
%find the start of zero entries in the lower bound (nnlp) and then trim
%each bound (upper and lower) to that length. Purpose: set equal number of
%variables in the vectors of matrix S
[rn] = find(S(:,2) == n); %look for the input observation
if isempty(rn) == 0; %found n in S but where is it?
 %n is the minimum observation
 if n == minn; %is the input = min(S) value?
 nnln = n; %yes, assign lower neighbor to it
 nnun = minn + ssizen; %upper nearest neighbor is a stepsize up
 rnnun = rn; %abort the nnun, nnln searches
 rnnln = rn; %
 %n is the maximum observation
 elseif n == maxn;
 nnln = maxn - ssizen; %go a stepsize down for nnln
 nnun = n; %already at highest observation value
 rnnun = rn; %abort the nnun, nnln searches
 rnnln = rn; %
 %n is somewhere in the middle; in this case, pass all known info fwd.
 elseif n > minn && n < maxn

137

 nnln = n;
 nnun = n;
 rnnun = rn;
 rnnln = rn;
 end
end
%
%search column 2 for the upper/lower bounds
if isempty(rn) == 1
 ind = 0; %reset the search index
 while isempty(rnnun) %run loop while rnnup is empty
 ind = ind+1; %...waiting to find a match
 [rnnun] = find(S(:,2) == n+ind); %ADD the index; search up from n
 end
 nnun = n+ind; %got a match! upper neighbor
%now find the lower nearest neighbor variable
 ind = 0; %reset the search index
 while isempty(rnnln) %run loop while rnnlp is empty
 ind = ind+1; %...waiting to find a match
 [rnnln] = find(S(:,2) == n-ind); %SUB the index; search dn from n
 end
 nnln = n-ind; %got a match! lower neighbor
end
%
%check for being on the diagonal n = p
if nnln == nnlp && nnun == nnup
 nnln = nnun; %lower takes same obs. value as upper
 [rnnln] = find(S(:,2) == nnln);
end
%truncate data one more time; subset of S meaningful to the analysis
%in between rows 2 and 3 is the solution for (getp,getn)
Y = [S(rnnln(1),:);
 S(rnnun(1),:);
 S(rnnln(2),:);
 S(rnnun(2),:)];
%**
%interpolation: find getn y-coordinate (coefficients) given a single
%x-coordinate. This is a an inverse use of the interp1 function, as it
%wants a unique x value for each y. Because the x-value is fixed along the
%curve (essentially the upper nearest neighbor and lower nearest neighbors
%are defining the curve), the interp1 routine used here has to cycle
%through a pair of points defined at the upper and lower nn observations.
%format is (ev=mean eigenvalue in all cases):
%ev we want to find = interp1([fixed lower nn obs; fixed upper nn obs],...
% [lower ev @ this x; upper ev @ this x],...
% observation we are trying to find)
%this routine handles the 'bias' factor; that is, how close getn is to
%either the upper or lower nearest neighbors impacts the
%ncol = length(Y(1,3:end)); %number of y-data columns (contains coeffs)
 %DO NOT USE ncol FOR PLOTTING--IT IS OFF BY 2
ncol = 3; %already know how many columns have beta val.
cu = zeros(1,ncol); %preallocate space
cl = zeros(1,ncol); %preallocate space
getbeta = zeros(1,ncol); %preallocate space
%**
%the logic in the following if/elseif lines evaluates four conditions for
%(p,n): The combinations that p and n are direct references in tablex.

138

%**
%(p,n) not in lookup tablex; interpolate a two-part solution.
%Part 1: Upper and lower curves. Interpolate nnln, nnun variables for n
%Part 2: Middle curve (the answer!). Using the curves from Part 1 as
% input, interpolate the variable curve in between nnup and nnlp.
%OR statement is (p,n) was on diagonal and corrections made (~line 171)
if (isempty(rn) == 1 && isempty(rp) == 1) && ~(nnln == nnun)
 for i = 1:ncol; %loop through the data; interpolate beta values
 %for coeff([u]pper) and coeff([l]ower) curves
 cu(i) = interp1([nnln;nnun],[Y(1,2+i);Y(2,2+i)],n); %upper
 cl(i) = interp1([nnln;nnun],[Y(3,2+i);Y(4,2+i)],n); %lower
 end
 %getev is the solution for the curve describing (p,n)
 for i = 1:ncol
 getbeta(i) = interp1([nnup;nnlp],[cu(i);cl(i)],p);
 end
%p is in tablex; n is not. Get (p,nnun) and (p,nnln) to interp a soln
elseif isempty(rn) == 1 && isempty(rp) == 0;
 for i = 1:ncol; %loop through the data; interpolate ev's
 getbeta(i) = interp1([nnln;nnun],[Y(1,2+i);Y(2,2+i)],n);
 end
 cu = getbeta; %already had the variable, only needed the
 cl = getbeta; %interpolation on the observations
%p is not in tablex, n is. Get (nnlp,n) and (nnup,n) to interp a soln
%OR statement is (p,n) was on diagonal and corrections made (~line 171)
elseif (isempty(rn) == 0 && isempty(rp) == 1) || nnln == nnun &&...
 ~(nnlp == nnup)
 cu = Y(1,3:5);
 cl = Y(3,3:5);
 for i = 1:ncol;
 getbeta(i) = interp1([nnup;nnlp],[cu(i);cl(i)],p);
 end
%(p,n) are both in the table. Direct referenced value--no interpolation
else isempty(rn) == 0 && isempty(rp) == 0;
 cu = Y(1,3:5);
 cl = cu;
 getbeta = cu;
end
%
%return the curve describing the lines, not just the coefficients of the
%model
xfine = 1:p; %0.1 controls the fidelity in the curve
 %to decrease, try 0.2 to 0.5
curve1 = polyval(Y(1,3:5),xfine); %nnun betas for nnup
curve2 = polyval(cu,xfine); %interpolated betas for getn on nnun
curve3 = polyval(Y(2,3:5),xfine); %nnun betas for nnlp
curve4 = polyval(getbeta,xfine); %interpolated betas for getp
%curve 5 not used in the 2OM evaluation
curve6 = polyval(Y(3,3:5),xfine); %nnln betas for nnlp
curve7 = polyval(cl,xfine); %interpolated betas for getn on nnln
curve8 = polyval(Y(4,3:5),xfine); %nnun betas for nnlp
curves = [curve1; curve2; curve3; curve4; curve6; curve7; curve8];
%
%end of function

1
3
9

A
p

p
en

d
ix

 III: Q
u

a
d

 C
h

a
rt

rm Horn's Curve Estimation Through Multi­
Dimensional Inter olation

Rln'"'
"dvi~nr~ nr_ KAnnP.th W_ R::.•• ..,

Reader : Lt Col Mark A. Friend
Department of Operational Sciences (ENS)

Air Force Institute of Technology

Methodology

Criteria for a candidate stopping rule:

•Visual, Accurate dimensionality estimator,
Leads to objective assessments

Step 1: Survey the literature for candidates

·Three techniques located; Horn's test
selected due to accuracy & positive oval.

• Number and sizes of published research
indicate region-of.interest (ROI) is within
5 S p S 1000 and 5 S n S 7000 (captures
80.3% of the 178 studies surveyed)

Step 3: Develop Horn's test theory into
MATLAB algorithms. Horn's methodology
separates noise from signal by considering
inherent random error from useful
information in the sample scree line

- - I

·Horn's methodology requires two distinct
elements (sampled & random data)

• The final solution is a synthesis of both
brought together

• Two solution strategies, similar methods
• Mean eigenvalues
·Linear regression second-order model

•Monte Carlo simulation of random data

\//)(0. 1 .) ""'('
:I.~ lj . \

• Eigendecomposition of corrh)
•Lookup table of sparse, preprocessed data
(196 hrs CPU time for 26,650 x 1002 matrix,
80MB; regression compacts to < 1 MB)

•Lookup tables nearest neighbor search
·Two-part piecewise linear interpolation
Step 4: Bring both elements together &
display graphical and tabulated summary

140

Bibliography

Bauer, K. W. (2012, March). Course Notes. OPER 685, Applied Multivariate Analysis I.

Wright-Patterson Air Force Base, OH, USA: The Air Force Institute of

Technology.

Cattell, R. B. (1966). The Scree Test for The Number of Factors. Multivariate Behavioral

Research, 245-276.

Charytanowicz, M., & Niewczas, J. (2012). Seeds Dataset (primary co-acknowledged).

Lublin, Poland: Institute of Mathematics and Computer Science, The John Paul II

Catholic University of Lublin. Retrieved January 14, 2013, from

http://archive.ics.uci.edu/ml/datasets/seeds

Cortez, P., & Morais, A. (2007). A Data Mining Approach to Predict Forest Fires Using

Meteorlogical Data. In J. Neves, M. F. Santos, & J. Machado (Ed.), New Trends

in Artificial Intelligence (pp. 512-523). Guimares: APPIA (ISBN-13 978-989-

95618-0-9). Retrieved 2013 14, January

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling Wine

Preferences by Data Mining from Physicochemical Properties. Decision Support

Systems, 47(4), 547-553. Retrieved January 14, 2013, from

http://archive.ics.uci.edu/ml/datasets/Wine+Quality

Dillon, W. R., & Goldstein, M. (1984). Multivariate Analysis. New York: John Wiley &

Sons.

Ehrenberg, A., & Goodhardt, G. (1976). Factor Analysis: Limitations and Alternatives.

Cambridge, MA: Marketing Science Institute.

Frank, A., & Asuncion, A. (2010). University of California Machine Learning

Repository. Retrieved from School of Information and Computer Science.

Franklin, S. B., Gibson, D. J., Robertson, P. A., Pohlmann, J. T., & Fralish, J. S. (1995).

Parallel Analysis: A Method for Determining Significant Principle Components.

Journal of Vegetation Science, 99-106.

Horn, J. L. (1965). A Rationale and Test for The Number of Factors in Factor Analysis.

Psychometrika, 179-185.

141

Horn, J. L., & Engstrom, R. (1979). Cattell's Scree Test in Relation to Bartlett's Chi-

Square Test and Other Observations on The Number of Factors Problem.

Multivariate Behavioral Research, 283-300.

Jackson, D. A. (1993). Stopping Rules in Principal Components Analysis: A Comparison

of Heuristical and Statistical Approaches. Ecology, 2204-2214.

Kaiser, H. F. (1960). The Application of Electronic Computers to Factor Analysis.

Educational and Psychological Measurement, 141-151.

Kaiser, H. F. (1986, October 6). The Application of Electronic Computers to Factor

Analysis. Citation Classics, p. 18.

Kulczycki, P., Kowalski, P., Lukasik, S., & Zak, S. (2012). Seeds Dataset (secondary co-

acknowledgment). Warsaw, Poland: Systems Research Insitute, Polish Academy

of Sciences.

Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A., & Moroz, I. M. (2007).

Exploiting Nonlinear Recurrent and Fractal Scaling Properties for Voice Disorder

Detection. BioMedical Engineering OnLine, 6(23). Retrieved January 14, 2013,

from http://archive.ics.uci.edu/ml/datasets/Parkinsons

Matsumoto, M. (2011, June 20). Mersenne Twister Home Page. Retrieved January 8,

2013, from Home Page of Makoto Matsumoto: http://www.math.sci.hiroshima-

u.ac.jp/~m-mat/MT/emt.html

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006). Introduction to Linear

Regression Analysis (Fourth Edition). Hoboken: John Wiley & Sons.

Peres-Neto, P. R., Jackson, D. A., & Somers, K. A. (2005). How Many Principal

Components? Stopping Rules for Determining The Number of Non-Trivial Axes

Revisited. Computational Statistics and Data Analysis, 974-997.

Quateroni, A., & Saleri, F. (2003). Scientific Computing with MATLAB. Berlin: Springer-

Verlag.

Recktenwald, G. (2000). Numerical Methods with MATLAB: Implementation and

Application. Upper Saddle River: Prentice Hall.

142

Ross, S. M. (2007). Introduction to Probability Models (Ninth Edition). Burlington:

Academic Press.

Sawilowky, S. S. (2003). You Think You've Got Trivials? Journal of Modern Applied

Statistical Methods, 218-225.

Semeion Research Center for the Science of Communication. (2008, November 11).

Semeion Handwritten Digit Data Set. Rome, Italy. Retrieved January 12, 2012,

from http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

Semeion Research Center for the Science of Communication. (2010, October 26). Steel

Plates Faults. Rome, Italy. Retrieved January 13, 2013, from

http://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults

The MathWorks. (2012, September 11). MATLAB Online Documentation Center.

Retrieved January 23, 2013, from The MathWorks Website:

http://www.mathworks.com/help/matlab/random-number-generation.html

University of California-Irvine. (2007). Machine Learning Repository. Retrieved January

8, 2013, from Center for Machine Learning and Intelligent Systems.

Velicer, W. F. (1976). Determining The Number of Components from The Matrix of

Partial Correlations. Psychometrika, 321-327.

Wolberg, W. H. (1992, July 15). Breast Cancer Wisconsin (Original) Data Set. Madison,

Wisconsin, USA. Retrieved January 14, 2013, from

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%2

9

Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface Method of Pattern

Separation for Medical Diagnosis Applied to Breast Cytology. National Academy

of Sciences, 87, pp. 9193-9196.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of Five Rules for Determining The

Number of Components to Retain. Psychological Bulletin, 432-442.

143

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate

for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that

notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY)

21-03-2013
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From — To)

June 2012 – March 2013

4. TITLE AND SUBTITLE

Horn’s Curve Estimation Through Multi-Dimensional Interpolation
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Bigley, Andrew L., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER

AFIT-ENS-13-M-01

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally left blank

10. SPONSOR/MONITOR’S ACRONYM(S)

n/a

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.

14. ABSTRACT: A well-known multivariate data reduction method is principal components analysis (PCA). PCA
transforms the variables under study into a set of components that are used to summarize the variation among the
variables. The benefit is the dimension of the data may be reduced by the descriptive power of the components,
permitting tractable analysis on large and messy datasets. Integral to successful PCA is determining when to stop
extracting components – the matter is not a trivial one. A component extraction stopping rule that consistently
produces reliable estimates of principal components is Horn's test. The drawback of the test is it requires a large
amount of random data to evaluate the hidden component structure. Leveraging the flexibility and power of the
MATLAB software package, a lookup table interpolates nearest neighbor searches of pre-processed mean
eigenvalue data to provide real-time results for datasets up to 1,000 variables on 7,000 samples. The
methodology is extended to a linear regression second-order model producing Horn’s curve, significantly reducing
the required size of the lookup table with no loss of resolution into the dimensionality estimate.

15. SUBJECT TERMS

Principal components analysis, Horn’s test, dimensionality, component extraction stopping rules, interpolation

16. SECURITY CLASSIFICATION OF:

U

17. LIMITATION

OF ABSTRACT

UU

18. NUMBER

OF PAGES

157

19a. NAME OF RESPONSIBLE PERSON

Dr. Kenneth W. Bauer/ENS

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-3636, ext 4328

Standard Form 298 (Rev. 8–98)
 Prescribed by ANSI Std. Z39.18

